首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fei XM  Wu YJ  Chang Z  Miao KR  Tang YH  Zhou XY  Wang LX  Pan QQ  Wang CY 《Cytotherapy》2007,9(4):338-347
BACKGROUND: The major challenge for cord blood transplantation (CBT) is higher rates of delayed and failed engraftment. In an attempt to broaden the application of CBT to more candidates, ex vivo expansion of hematopoietic stem/progenitor cells in CB is a major area of investigation. The purpose of this study was to employ human BM mesenchymal stromal cells (hBM-MSC) as the feeding-layer to expand CB cells ex vivo. METHODS: In this study, hBM-MSC were isolated and characterized by morphologic, mmunophenotypic and RT-PCR analysis. The hBM-MSC at passage 3 were employed as the feeding-layer to expand CB CD34(+) cells in vivo in the presence of thrombopoietin, flt3/flk2 ligand, stem cell factor and G-CSF. The repopulating capacity of the ex vivo-expanded CB cells was also evaluated in a NOD/SCID mice transplant experiment. RESULTS: After 1 or 2 weeks of in vitro expansion, hBM-MSC supported more increasing folds of CB in total nucleated cells, CD34(+) cells and colony-forming units (CFU) compared with CB without hBM-MSC. Furthermore, although NOD/SCID mice transplanted with CB cells expanded only in the presence of cytokines showed a higher percentage of human cell engraftment in BM than those with unexpanded CB CD34(+) cells, expanded CB cells co-cultured with hBM-MSC were revealed to enhance short-term engraftment further in recipient mice. DISCUSSION: Our study suggests that hBM-MSC enhance in vitro expansion of CB CD34(+) cells and short-term engraftment of expanded CB cells in NOD/SCID mice, which may be valuable in a clinical setting.  相似文献   

2.
In an effort to obtain defined culture conditions for ex vivo expansion of hematopoietic stem and progenitor cells which avoid the supplementation of serum, we cultured human CD34(+) hematopoietic progenitor cells in a chemically defined, serum-free medium in the presence of hematopoietic growth factors (HGFs), stem cell factor (SCF), interleukin (IL)-1beta, IL-3, IL-6, and erythropoietin (EPO). A medium, SFM-1, was prepared according to a protocol previously optimized for semisolid progenitor cell assays containing Iscove's Modified Dulbecco's Medium (IMDM) plus cholesterol, bovine serum albumin, transferrin, nucleotides and nucleosides, insulin, and beta-mercaptoethanol. In static cultures seeded with CD34(+)-enriched progenitor cells isolated from human peripheral blood, a mean 76.6-fold expansion of total nucleated cells and a mean 4.6-fold expansion of colony-forming cells (CFC) was recorded after 14 days. Morphological analysis of the expanded cells revealed formation of myeloid, erythroid, and megakaryocytic cells. Flow cytometric analysis indicated that CD34(+) antigen expressing cells were maintained to a limited degree only, and cell populations expressing surface markers for myeloid (CD33, CD14, and CD15) and megakaryocytic (CD41a) lineages predominated. Within SFM-1, bovine serum albumin (BSA), cholesterin, and transferrin represented the most critical components needed for efficient total cell and CFC expansion. Addition of autologous patient plasma (APP) or fetal calf serum (FCS) to SFM-1 resulted in inferior cell amplification and CFC formation compared to controls in SFM-1, indicating that the components used in SFM-1 could replace exogenous serum. Four commercially available serum-free media resulted in either comparable or lower total cell and CFC yields as SFM-1. The transplantation potential of CD34(+) cells after culture in SFM-1 was assayed using limiting dilution analysis on preformed irradiated bone marrow stroma and revealed maintenance of long-term bone marrow culture initiating cell (LTCIC) levels during the culture period. These data indicate that HGF-supported multilineage ex vivo expansion of human CD34(+) hematopoietic progenitor cells is feasible using an IMDM-based culture medium which contains a restricted number of additives, resulting in analogous or improved yields of both primitive and differentiated cells compared to previously established protocols. We suggest that this culture protocol is of advantage when working with pharmaceutical-grade preparations under serum-free conditions.  相似文献   

3.
Ex vivo expansion of stem cells might be a feasible method of resolving the problem of limited cell supply in cell-based therapy. The implantation of expanded CD34(+) endothelial progenitor cells has the capacity to induce angiogenesis. In this study, we tried to induce angiogenesis by implanting expanded CD117(+) stem cells derived from mouse bone marrow. After 2 wk of culture with the addition of several growth factors, the CD117(+) stem cells expanded approximately 20-fold and had an endothelial phenotype with high expression of CD34 and vascular endothelial-cadherin. However, >70% of these ex vivo expanded cells had a senescent phenotype by beta-galactosidase staining, and their survival and incorporation were poor after implantation into the ischemic limbs of mice. Compared with the PBS injection only, the microvessel density and the percentage of limb blood flow were significantly higher after the implantation of 2 x 10(5) freshly collected CD117(+) cells (P < 0.01) but not after the implantation of 2 x 10(5) expanded CD117(+) cells (P > 0.05). These data indicate that ex vivo expansion of CD117(+) stem cells has low potency for inducing therapeutic angiogenesis, which might be related to the cellular senescence during ex vivo expansion.  相似文献   

4.
BACKGROUND: Multiple studies have demonstrated that 'purging' of autografts with 4-hydroperoxycyclophosphamide (4HC) or the related compound mafosfamide (Mf), to eradicate residual leukemia, produces the best results associated with autologous blood and marrow transplantation for AML. However, 4HC purging results in prolonged aplasia. Therefore, we evaluated the potential of ex vivo expansion of Mf-treated CD34+ cells from mobilized PBPC. METHODS: CD34+ cells were isolated from PBPC products and treated with 30 microg/mL Mf. The Mf-treated CD34+ cells were washed and cultured for 14 days in StemLine II-defined media containing recombinant human (rh) SCF, G-CSF and thrombopoietin (Tpo). RESULTS: Treatment with Mf resulted in 90% killing of progenitor cells (GM-CFC) but maintenance of SCID-repopulating cells (SRC). Ex vivo culture of the Mf-treated CD34+ cells resulted in decreased cell numbers (10-20% of the starting cell dose) during the first week. Nevertheless, in the second week of culture the total cell numbers expanded to approximately 20-fold above starting cell numbers and progenitor cells returned to approximately pre-treatment levels. DISCUSSION: These studies demonstrate the potential of ex vivo culture to expand both total cell numbers and progenitor cells following treatment of PBPC CD34+ cells with Mf. Clinical studies are currently being initiated to evaluate the engraftment potential of these purged and expanded products.  相似文献   

5.
A novel stem cell marker prominin-1 (CD133) has been shown to be expressed on a subpopulation of CD34(+) haematopoietic stem and progenitor cells. The aim of this study was to compare in parallel commercially available CD34(+) and CD133(+) isolation methods based on paramagnetic bead-coupled antibodies using clinical-grade samples of mobilized peripheral blood from 10 individual healthy donors under identical conditions. The CD133 negative fraction from the first selection was used for CD34(+) enrichment to obtain an additional CD34(+)/CD133(-) population. Although no significant difference in total cell expansion between cells isolated from the three procedures was observed in a 7-day cytokine-driven suspension culture, the long-term culture-initiating cell assay demonstrated that cells derived by CD34(+) isolation contain less primitive progenitors than those isolated based on CD133(+) selection. Interestingly, CD34(+)-enriched progenitors, especially the CD34(+)/CD133(-) fraction, contained a significantly higher proportion of erythroid colony-forming cells, whereas the highest content of myeloid colony-forming cells was concentrated in the CD133(+) selected cells. These subtle differences between CD34(+) and CD133(+) immunomagnetic selection will have to be explored for their potential clinical relevance.  相似文献   

6.
Hematopoiesis is maintained by the activity of multipotent stem cells, which have the dual capacity to self-renew and to differentiate into all of the blood cell lineages. The major challenge of stem cells based regenerative therapy is to expand ex vivo the primitive compartment to increase transplantable stem cells number. The present study was designed to evaluate several culture systems for in vitro maintenance of umbilical cord blood stem cells. The influences of different growth conditions such as stromal feeder layer, cytokines supplement and placental conditioned medium (PCM) have been evaluated over a relatively short period of time on CD34(+) cell expansion and maintenance of clonogenic progenitors. When cells were expanded on feeder layer in the presence of added cytokines and PCM on average a 2.96-fold increase of CD34(+)CD71(-) and a 3.13-fold increase of CD34(+)HLA-DR(-) was observed. The total number of colony forming cells (35 +/- 2.65) indicated also that the yield of clonogenic progenitors obtained with a combination of all factors was two folds higher than each of these factors alone and ten time above control (3.67 +/- 2.52). In conclusion, the results of our study clearly show that the ex vivo expansion of hematopoietic progenitor cells obtained from human umbilical cord blood is dependent on controlled experimental conditions, which might be helpful when designing culture systems for clinical applications.  相似文献   

7.
Ex vivo expansion of residual autologous hematopoietic stem and progenitor cells collected from victims soon after accidental irradiation (autologous cell therapy) may represent an additional or alternative approach to cytokine therapy or allogeneic transplantation. Peripheral blood CD34+ cells could be a useful source of cells for this process provided that collection and ex vivo expansion of hematopoietic stem and progenitor cells could be optimized. Here we investigated whether mesenchymal stem cells could sustain culture of irradiated peripheral blood CD34+ cells. In vitro irradiated (4 Gy 60Co gamma rays) or nonirradiated mobilized peripheral blood CD34+ cells from baboons were cultured for 7 days in a serum-free medium supplemented with stem cell factor+thrombopoietin+interleukin 3+FLT3 ligand (50 ng/ml each) in the presence or absence of mesenchymal stem cells. In contrast to cultures without mesenchymal stem cells, irradiated CD34+ cells cultured with mesenchymal stem cells displayed cell amplification, i.e. CD34+ (4.9-fold), CD34++ (3.8-fold), CD34++/Thy-1+ (8.1-fold), CD41+ (12.4-fold) and MPO+ (50.6-fold), although at lower levels than in nonirradiated CD34+ cells. Fourteen times more clonogenic cells, especially BFU-E, were preserved when irradiated cells were cultured on mesenchymal stem cells. Moreover, we showed that the effect of mesenchymal stem cells is related mainly to the reduction of apoptosis and involves cell-cell contact rather than production of soluble factor(s). This experimental model suggests that mesenchymal stem cells could provide a crucial tool for autologous cell therapy applied to accidentally irradiated victims.  相似文献   

8.
Ex vivo expansion of cord blood mononuclear cells on mesenchymal stem cells   总被引:8,自引:0,他引:8  
BACKGROUND: Cord blood (CB) cells are being used increasingly as a source of hematopoietic cells to support high dose chemotherapy. However, CB units contain low numbers of cells, including CD34+ cells, and thus their use is associated with significant delays in engraftment of neutrophils and platelets. Exvivo expansion of CB has been proposed to increase the numbers of cells available. We and others have reported the requirement of CD34 selection for optimal expansion of CB products'; however, the selection of frozen CB products in clinical trials results in significant loss of CD34+ cells, with a median recovery of 50, but less than 40% recovery in more than one-third of products. In the present studies we evaluated the potential of mesenchymal stem cells (MSC) to support ex vivo expansion of unselected CB products. METHODS: Mononuclear cells (MNC) from CB products were isolated and cultured on preformed MSC layers in T150 flasks containing 50 mL Stemline II media plus hematopoietic growth factors. Various culture conditions were compared for optimal expansion of the CB MNC. RESULTS: Ex vivo expansion of CB MNC on MSC resulted in 10- to 20-fold expansion of total nucleated cells, seven- to 18-fold expansion of committed progenitor cells, two- to five-fold expansion of primitive progenitor cells and 16- to 37-fold expansion of CD34+ cells. DISCUSSION: These studies demonstrated significant expansion of CB products without CD34 cell selection using culture conditions that are clinically applicable. Our current focus is to initiate clinical trials to evaluate the in vivo potential of CB cells expanded with these conditions.  相似文献   

9.
Umbilical cord blood (UCB) is increasingly being used for human hematopoietic stem cell (HSC) transplantation in children but often requires pooling multiple cords to obtain sufficient numbers for transplantation in adults. To overcome this limitation, we have used an ex vivo two-week culture system to expand the number of hematopoietic CD34(+) cells in cord blood. To assess the in vivo function of these expanded CD34(+) cells, cultured human UCB containing 1 x 10(6) CD34(+) cells were transplanted into conditioned NOD-scid IL2rgamma(null) mice. The expanded CD34(+) cells displayed short- and long-term repopulating cell activity. The cultured human cells differentiated into myeloid, B-lymphoid, and erythroid lineages, but not T lymphocytes. Administration of human recombinant TNFalpha to recipient mice immediately prior to transplantation promoted human thymocyte and T-cell development. These T cells proliferated vigorously in response to TCR cross-linking by anti-CD3 antibody. Engrafted TNFalpha-treated mice generated antibodies in response to T-dependent and T-independent immunization, which was enhanced when mice were co-treated with the B cell cytokine BLyS. Ex vivo expanded CD34(+) human UCB cells have the capacity to generate multiple hematopoietic lineages and a functional human immune system upon transplantation into TNFalpha-treated NOD-scid IL2rgamma(null) mice.  相似文献   

10.
Ge J  Cai H  Tan WS 《Cell proliferation》2011,44(6):550-557
Objectives: Ex vivo expansion is a feasible strategy, which may overcome limitation of the very low frequency of haematopoietic stem/progenitor cells, in umbilical cord blood (UCB). However, both quality of cells and safety of expanded population are critical issues to be addressed for their clinical application. Hence, in this study, we evaluated genetic stability of UCB‐derived CD34+ cells during ex vivo culture, based on karyotype analysis, as well as its effect on cell proliferation characteristics. Materials and methods: CD34+ cells were isolated from human UCB samples by immunomagnetic separation and were expanded ex vivo over a 28‐day period. Expansion of total nucleate cells, CD34+ cells and CD34+ CD38? cells was investigated. Karyotype analysis of the expanded cells from six randomly selected UCB samples was performed to evaluate their genetic stability. Results: Chromosomal abnormality of expanded cells mainly appeared by day 14, but was seldom sustained until day 28. None of the chromosomal abnormal samples displayed neoplastic proliferation, and expanded cells with altered chromosomes did not show obvious transformation phenomena according to soft agar assay. Conclusions: Ex vivo expansion could lead to occurrence of chromosomal abnormality, although here it did not produce excessive proliferative advantage of the expended cells. Importantly, chromosomal alteration seemed not to be inheritable and unlikely to result in malignant transformation. However, further in‐depth evaluation of potential clinical risks of chromosomal abnormality is warranted.  相似文献   

11.
目的探讨小分子化合物UM171和SR1对脐带血、供者动员外周血和淋巴瘤患者自体动员外周血3种来源的造血干/祖细胞(HSPCs)体外扩增的作用。方法将3种来源的CD34+细胞分别予以UM171、SR1干预后进行体外扩增培养,记为对照组、UM171组、SR1组和UM171+SR1组。通过细胞计数检测各组总有核细胞的数量,流式细胞术检测HSPCs的比例、各谱系分化细胞的比例和HSPCs上归巢相关因子CXCR4的表达水平。多组数据若满足方差齐性,采用单因素方差分析,组间两两比较采用LSD-t检验;若方差不齐,多组间比较以及两两比较均采用Kruskal-Wallis检验。结果与对照组比较,UM171和SR1均能促进3种来源HSPCs的比例升高,同时UM171能够增加3种来源HSPCs的扩增倍数。与对照组比较,UM171处理后脐带血来源的CD33^+(髓系)细胞的比例升高,CD41^+(巨核)细胞的比例降低;SR1处理后3种来源的CD3-CD56^+(自然杀伤)细胞的比例均升高。体外扩增48 h后各组HSPCs上CXCR4的表达较培养前增加。结论UM171能够有效扩增3种来源HSPCs的数量,促进脐带血来源HSPCs分化为髓系细胞并抑制其分化为巨核细胞。SR1能够促进3种来源HSPCs分化为自然杀伤细胞。体外扩增培养可以提高3种来源HSPCs上CXCR4的表达水平。  相似文献   

12.
As a possible approach to the treatment of thrombopocytopenia, the ex vivo expansion of megakaryocytic progenitor cells may be a useful tool to accelerate platelet recovery in vivo. Our objective was to assess the promoting effect of proteoglycans in a serum-free culture condition using human cord blood CD34(+) cells. Highly purified proteoglycan (PG) extracted from the nasal cartilage of salmon heads and the nasal septum cartilage of a whale were applied to the ex vivo expansion of megakaryocytopoiesis and thrombopoiesis from placental and umbilical cord blood CD34(+) cells in serum-free cultures stimulated with a combination of thrombopoietin (TPO) and interleukin-3 (IL-3). Each PG (0.5 and 5 mug) was applied to the culture with three different concentrations of TPO (50, 5 and 0.5 ng/ml) and IL-3 (100, 10 and 1 ng/ml). Both of the PGs showed no promoting effects on the mononuclear cell proliferation rate in any of the cultures. However, the whale-PG promoted the generation of megakaryocytic progenitor cells and megakaryocytes in the culture with a lower dose of cytokines, respectively. In addition, whale-PG led to a significant increase in CD42a(+) particles which seemed to be platelets. While the salmon-PG failed to promote such production in almost all of the cultures. Although whale-PG is an attractive molecule for the ex vivo expansion of human megakaryocytopoiesis, its action may depend on the glycosaminoglycans sulfation pattern and the ability of the binding affinity and the kinetics to interact with the cytokines and hematopoietic stem/progenitor cells.  相似文献   

13.
BACKGROUND: Psychological stress induces rapid and long-lasting changes in blood cell composition, implying the existence of stress-induced factors that modulate hematopoiesis. Here we report the involvement of the stress-associated "readthrough" acetylcholinesterase (AChE-R) variant, and its 26 amino acid C-terminal domain (ARP) in hematopoietic stress responses. MATERIALS AND METHODS: We studied the effects of stress, cortisol, antisense oligonucleotides to AChE, and synthetic ARP on peripheral blood cell composition and clonogenic progenitor status in mice under normal and stress conditions, and on purified CD34 cells of human origin. We employed in situ hybridization and immunocytochemical staining to monitor gene expression, and 5-bromo-2-deoxyuridine (BrdU), primary liquid cultures, and clonogenic progenitor assays to correlate AChE-R and ARP with proliferation and differentiation of hematopoietic progenitors. RESULTS: We identified two putative glucocorticoid response elements in the human ACHE gene encoding AChE. In human CD34+ hematopoietic progenitor cells, cortisol elevated AChE-R mRNA levels and promoted hematopoietic expansion. In mice, a small peptide crossreacting with anti-ARP antiserum appeared in serum following forced swim stress. Ex vivo, ARP was more effective than cortisol and equally as effective as stem cell factor in promoting expansion and differentiation of early hematopoietic progenitor cells into myeloid and megakaryocyte lineages. CONCLUSIONS: Our findings attribute a role to AChE-R and ARP in hematopoietic homeostasis following stress, and suggest the use of ARP in clinical settings where ex vivo expansion of progenitor cells is required.  相似文献   

14.
BACKGROUND: We have previously demonstrated that the copper chelator tetraethylenepentamine (TEPA) enables preferential expansion of early hematopoietic progenitor cells (CD34+CD38-, CD34+CD38-Lin-) in human umbilical cord blood (CB)-derived CD34+ cell cultures. This study extends our previous findings that copper chelation can modulate the balance between self-renewal and differentiation of hematopoietic progenitor cells. METHODS: In the present study we established a clinically applicative protocol for large-scale ex vivo expansion of CB-derived progenitors. Briefly, CD133+ cells, purified from CB using Miltenyi Biotec's (Bergisch Gladbach, Germany) CliniMACS separation device and the anti-CD133 reagent, were cultured for 3 weeks in a clinical-grade closed culture bag system, using the chelator-based technology in combination with early-acting cytokines (SCF, thrombopoietin, IL-6 and FLT-3 ligand). This protocol was evaluated using frozen units derived from accredited cord blood banks. RESULTS: Following 3 weeks of expansion under large-scale culture conditions that were suitable for clinical manufacturing, the median output value of CD34+ cells increase by 89-fold, CD34+CD38- increase by 30-fold and CFU cells (CFUc) by 172-fold over the input value. Transplantation into sublethally irradiated non-obese diabetic (NOD/SCID) mice indicated that the engraftment potential of the ex vivo expanded CD133+ cells was significantly superior to that of unexpanded cells: 60+/-5.5% vs. 21+/-3.5% CD45+ cells, P=0.001, and 11+/-1.8% vs. 4+/-0.68% CD45+CD34+ cells, P=0.012, n=32, respectively. DISCUSSION: Based on these large-scale experiments, the chelator-based ex vivo expansion technology is currently being tested in a phase 1 clinical trial in patients undergoing CB transplantation for hematological malignancies.  相似文献   

15.
16.
We previously reported that CD31(bright) cells, which were sorted from cultured AC133(+) cells of adult peripheral blood cells, differentiated more efficiently into endothelial cells than CD31(+) cells or CD31(-) cells, suggesting that CD31(bright) cells may be endothelial precursor cells. In this study, we found that CD31(bright) cells have a strong ability to release cytokines. The mixture of vascular endothelial growth factor (VEGF), thrombopoietin (TPO), and stem cell factor stimulated ex vivo expansion of the total cell number from cultured AC133(+) cells of adult peripheral blood cells and cord blood cells, resulting in incrementation of the adhesion cells, in which endothelial nitric oxide synthase and kinase insert domain-containing receptor were positive. Moreover, the mixture of VEGF and TPO increased the CD31(bright) cell population when compared with VEGF alone or the mixture of VEGF and stem cell factor. These data suggest that TPO is an important growth factor that can promote endothelial precursor cells expansion ex vivo.  相似文献   

17.
Hemopoietic stem cells (HSC) are identified through their unique ability, at the single cell level, to long-term reconstitute all blood cell lineages. Sustained myeloid reconstitution is considered the hallmark of HSC, because myeloid progenitors and their progeny have very short half-lives. Here we demonstrate that the established practice of relying on RB6-8C5 as a myeloid specific Ab can result in overestimation of HSC frequencies because the RB6-8C5 Ab also detects Ags expressed on a sizeable population of CD3(+)CD8(+) T cells, constitutively as well as following transplantation. Likewise, a high fraction of mice transplanted with limiting numbers of ex vivo expanded Lin(-)Sca(+)kit(+)CD34(-) HSC show long-term RB6-8C5(+)CD3(+) (lymphoid) but no RB6-8C5(+)CD3(-) (myeloid) reconstitution. Most noteworthy, the use of RB6-8C5 as a myeloid specific Ab can be deceptive by implicating the existence of lineage-restricted HSC capable of long-term reconstituting the myeloid and T, but not B, cell lineage. Because cross-lineage expression of "lineage-specific" markers is unlikely to be unique to the blood system, claims of unexpected cell fates should be substantiated not only by acquisition of lineage-specific markers, but also absence of markers of other lineages normally derived from the investigated stem cells.  相似文献   

18.
G-CSF mobilized peripheral blood and cord blood are major sources of hematopoietic progenitor cells. These cells are characterized by expression of “early” antigens. We have evaluated the coexpression of hematopoietic markers CD34, CD133, CD90, CDCP1, and CD117 and activation antigen CD38 using multicolor flow cytometry. We showed that cells positive for each particular antigen generate a separate population. The percentage of cells expressing each particular “early” antigen is twice as high in the cord blood as in the mobilized blood. The cell number with complex progenitor phenotype (CD34+/CD38?/CD117?, CD133+/CD34+/CD38?, CDCP1+/CD34+/CD38?, etc.) is equal in mobilized and cord blood. There is a strong positive correlation between CD34, CD133, CD117, and CDCP1 expression in both groups. Positive correlation was observed between CD90 and CD34, CD133, CDCP1, and CD117 expression only in cord blood; it was not significant in mobilized blood. The analyses of early antigens’ coexpression with activation CD38 marker did not confirm the hypothesis of sequential activation and loss of expression of the aforementioned antigens. We assume that there is global regulation of CD34, CD133, CDCP1, and CD117 expression. Expression of CD38 may be reversibly suppressed during maturation of the hematopoietic cells, and CD117 may be expressed on not only myeloid cells.  相似文献   

19.
BACKGROUND: Our lab has previously shown that adoptive transfer of in vitro expanded autologous purified polyclonal CD4(+) T cells using anti-CD3/CD28 coated beads induced antiviral responses capable of controlling simian immunodeficiency virus (SIV) replication in vivo. RESULTS: Expansion on anti-CD3/28 coated beads was found to induce a true polyclonal expansion as CFSE labeled cells uniformly showed dilution of the dye over several days of culture, in contrast to aliquots of the same cells subjected to mitogen stimulation. Of interest was the finding that CD4(+) T cells collected before and during early chronic SIV infection or AIDS stage did not show any or only modest differences in proliferative response or expansion kinetics. The reason for such excellent expansion properties was analyzed by the quantitation of telomerase activity in aliquots of expanding CD4(+) T cells from sample collected at various times post-infection. First, anti-CD3/28 expanded CD4(+) T cells exhibited telomerase levels 2- to 20-fold higher than the starting population of CD4(+) T cells. Moreover, while telomerase activity in ex vivo tested CD4(+) T cells was found to decrease following SIV infection and disease progression, anti-CD3/28 expansion appeared to restore significant levels of telomerase activity as no difference was noted in telomerase expression between CD4(+) T cells expanded from samples collected before or during the chronic SIV infection. When such expanded and CFSE labeled T cells were autologously transferred to monkeys, evidence for extended survival in vivo was provided as CFSE labeled cells were detected to relatively high levels in blood and spleen at 1 week post-infection. CONCLUSION: In summary, the data suggest that anti-CD3/28 mediated expansion of CD4(+) T cells retains its immunotherapeutic potential not only during the early stages of lentiviral infection but also at more advanced stages of disease.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号