首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
The nuclei of Plasmodium yoelii nigeriensis contain an enzyme, ADP-ribosyltransferase, that will incorporate the ADP-ribose moiety of NAD+ into acid-insoluble product. The time, pH and temperature optima of this incorporation are 30 min, 8.5 and 25 degrees C respectively. Maximum stimulation of the enzyme activity is obtained with 1.0 mM-dithiothreitol or 2.0 mM-2-mercaptoethanol. Ca2+ and Mg2+ ions at optimum concentrations of 5 mM and 10 mM respectively stimulated the activity of the enzyme by 21% and 91%. The enzyme activity is, however, inhibited by 24% in the presence of 10 mM-MnSO4. The substrate, NAD+, exhibits an apparent Km of 500 microM, and the activity of the enzyme is inhibited by four chemical classes of inhibitors: nicotinamides, methylxanthines, thymidine and aromatic amides. The inhibitors are effective in the following increasing order: nicotinamide less than 3-aminobenzamide less than thymidine less than 5-methylnicotinamide less than theophylline less than m-methoxybenzamide less than theobromine. The enzyme activity is also inhibited by some DNA-binding anti-malarial drugs.  相似文献   

4.
Recent years have seen tremendous progress in our understanding of malaria parasite molecular biology. To a large extent, this progress follows significant developments in genetic, molecular and chemical tools available to study the malaria parasites and related Apicomplexa, in particular Toxoplasma gondii. One area of major advancement has been in understanding parasite host-cell invasion, a process that utilizes several essential molecular mechanisms that are conserved across the different lifecycle stages. Here, we summarize some of the most recent experimental data that shed light on the events underlying preparation and execution of malaria parasite invasion and how these insights might relate to the development of new antimalarial drugs.  相似文献   

5.
Reassociation kinetics of the fragments of DNA consisting of interspersed repetitive and non-repetitive nucleotide sequences is considered in this paper. Based on the model, suggested by Gavrilov and Mazo (Mol. biol., 11, 101 1977), which takes into account the random DNA shearing, both reassociation kinetics of the total DNA in the region corresponding to interspersed repeat reassociation and that of the isolated preparation of interspersed repetitive sequences are calculated. In both cases influence of the repeat length on the reassociation rate is demonstrated. The estimation of the repetition frequency of rare repeats from pigeon genome is specified using calculations performed.  相似文献   

6.
The susceptibility of wild-caught European passeriform birds to naturally isolated malaria parasites, Plasmodium (Novyella) nucleophilum and Plasmodium (Novyella) vaughani, was studied by means of intramuscular subinoculation of infected citrated blood. Plasmodium nucleophilum of the great tit, Parus major, was transmitted to 3 great tits, but 3 blackcaps (Sylvia atricapilla) were not susceptible. Plasmodium vaughani of the robin, Erithacus rubecula, was transmitted to 1 robin and 1 blackcap, but 1 dunnock, Prunella modularis, was not susceptible. The prepatent period was between 8 and 10 days in all experimental infections. Maximum experimental parasitemia (3.4% of red cells) was detected in great tits infected with P. nucleophilum 23 days postexposure. A light (<0.01%) transient parasitemia of P. vaughani developed in the robin and blackcap. This study is in accord with former experimental observations on host specificity of P. nucleophilum and P. vaughani, which are characterized by a wide, but selective, range of avian hosts. Two new host-parasite associations were recorded.  相似文献   

7.
Malaria has been invoked, perhaps more than any other infectious disease, as a force for the selection of human genetic polymorphisms. Evidence for genome-shaping interactions can be found in the geographic and ethnic distributions of the hemoglobins, blood group antigens, thalassemias, red cell membrane molecules, human lymphocyte antigen (HLA) classes, and cytokines. Human immune responses and genetic variations can correspondingly influence the structure and polymorphisms of Plasmodium populations, notably in genes that affect the success and virulence of infection. In Africa, where the burden from Plasmodium falciparum predominates, disease severity and manifestations vary in prevalence among human populations. The evolutionary history and spread of Plasmodium species inform our assessment of malaria as a selective force. Longstanding host-pathogen relationships, as well as recent changes in this dynamic, illustrate the selective pressures human and Plasmodium species place on one another. Investigations of malaria protection determinants and virulence factors that contribute to the complexity of the disease should advance our understanding of malaria pathogenesis.  相似文献   

8.
Species of malaria parasite (phylum Apicomplexa: genus Plasmodium) have traditionally been described using the similarity species concept (based primarily on differences in morphological or life-history characteristics). The biological species concept (reproductive isolation) and phylogenetic species concept (based on monophyly) have not been used before in defining species of Plasmodium. Plasmodium azurophilum, described from Anolis lizards in the eastern Caribbean, is actually a two-species cryptic complex. The parasites were studied from eight islands, from Puerto Rico in the north to Grenada in the south. Morphology of the two species is very similar (differences are indistinguishable to the eye), but one infects only erythrocytes and the other only white blood cells. Molecular data for the cytochrome b gene reveal that the two forms are reproductively isolated; distinct haplotypes are present on each island and are never shared between the erythrocyte-infecting and leucocyte-infecting species. Each forms a monophyletic lineage indicating that they diverged before becoming established in the anoles of the eastern Caribbean. This comparison of the similarity, biological and phylogenetic species concepts for malaria parasites reveals the limited value of using only similarity measures in defining protozoan species.  相似文献   

9.
10.
11.
12.
Over a third of the human genome consists of interspersed repetitive sequences which are primarily degenerate copies of transposable elements. In the past year, the identities of many of these transposable elements were revealed. The emerging concept is that only three mechanisms of amplification are responsible for the vast majority of interspersed repeats and that with each autonomous element a number of dependent non-autonomous sequences have co-amplified.  相似文献   

13.
Human malaria infections resulting from Plasmodium falciparum have become increasingly difficult to treat due to the emergence of drug-resistant parasites. The P. falciparum purine salvage enzyme purine nucleoside phosphorylase (PfPNP) is a potential drug target. Previous studies, in which PfPNP was targeted by transition state analogue inhibitors, found that those inhibiting human PNP and PfPNPs killed P. falciparum in vitro. However, many drugs have off-target interactions, and genetic evidence is required to demonstrate single target action for this class of potential drugs. We used targeted gene disruption in P. falciparum strain 3D7 to ablate PNP expression, yielding transgenic 3D7 parasites (Deltapfpnp). Lysates of the Deltapfpnp parasites showed no PNP activity, but activity of another purine salvage enzyme, adenosine deaminase (PfADA), was normal. When compared with wild-type 3D7, the Deltapfpnp parasites showed a greater requirement for exogenous purines and a severe growth defect at physiological concentrations of hypoxanthine. Drug assays using immucillins, specific transition state inhibitors of PNP, were performed on wild-type and Deltapfpnp parasites. The Deltapfpnp parasites were more sensitive to PNP inhibitors that bound hPNP tighter and less sensitive to MT-ImmH, an inhibitor with 100-fold preference for PfPNP over hPNP. The results demonstrate the importance of purine salvage in P. falciparum and validate PfPNP as the target of immucillins.  相似文献   

14.
Malaria is still a major health problem in developing countries. It is caused by the protist parasite Plasmodium, in which proteases are activated during the cell cycle. Ca(2+) is a ubiquitous signalling ion that appears to regulate protease activity through changes in its intracellular concentration. Proteases are crucial to Plasmodium development, but the role of Ca(2+) in their activity is not fully understood. Here we investigated the role of Ca(2+) in protease modulation among rodent Plasmodium spp. Using fluorescence resonance energy transfer (FRET) peptides, we verified protease activity elicited by Ca(2+) from the endoplasmatic reticulum (ER) after stimulation with thapsigargin (a sarco/endoplasmatic reticulum Ca(2+)-ATPase (SERCA) inhibitor) and from acidic compartments by stimulation with nigericin (a K(+)/H(+) exchanger) or monensin (a Na(+)/H(+) exchanger). Intracellular (BAPTA/AM) and extracellular (EGTA) Ca(2+) chelators were used to investigate the role played by Ca(2+) in protease activation. In Plasmodium berghei both EGTA and BAPTA blocked protease activation, whilst in Plasmodium yoelii these compounds caused protease activation. The effects of protease inhibitors on thapsigargin-induced proteolysis also differed between the species. Pepstatin A and phenylmethylsulphonyl fluoride (PMSF) increased thapsigargin-induced proteolysis in P. berghei but decreased it in P. yoelii. Conversely, E64 reduced proteolysis in P. berghei but stimulated it in P. yoelii. The data point out key differences in proteolytic responses to Ca(2+) between species of Plasmodium.  相似文献   

15.
This paper offers a criticism of the common approach to the reassociation kinetics of eukaryotic DNA assuming an independent reassociation of nucleotide sequences with different frequencies of reiteration. The reassociation of randomly sheared DNA containing reiterated sequences interspersed with unique ones is described in terms of the model for randomly sheared DNA proposed by Gavrilov & Mazo (1977). Computations performed for different values of the interspersion parameters demonstrate their influence on the reassociation rate of total DNA and its repeat-enriched fraction. The reassociation rate of repeated sequences increases with their length. In the case of short-period interspersion appreciable differences are observed between the reassociation kinetics computed in terms of the random shearing model and the curves obtained for an admittedly independent reassociation of repeated and single-copy sequences.  相似文献   

16.
17.
The malaria parasite Plasmodium falciparum faces drastic osmotic changes during kidney passages and is engaged in the massive biosynthesis of glycerolipids during its development in the blood-stage. We identified a single aquaglyceroporin (PfAQP) in the nearly finished genome of P. falciparum with highest similarity to the Escherichia coli glycerol facilitator (50.4%), but both canonical Asn-Pro-Ala (NPA) motifs in the pore region are changed to Asn-Leu-Ala (NLA) and Asn-Pro-Ser (NPS), respectively. Expression in Xenopus oocytes renders them highly permeable for both water and glycerol. Sugar alcohols up to five carbons and urea pass the pore. Mutation analyses of the NLA/NPS motifs showed their structural importance, but the symmetrical pore properties were maintained. PfAQP is expressed in blood-stage parasites throughout the development from rings via trophozoites to schizonts and is localized to the parasite but not to the erythrocyte cytoplasm or membrane. Its unique bi-functionality indicates functions in the protection from osmotic stress and efficiently provides access to the serum glycerol pool for the use in ATP generation and primarily in the phospholipid synthesis.  相似文献   

18.
The initial rates of uptake of L-tryptophan into normal human red blood cells and into cells infected by the malarial parasite Plasmodium falciparum in vitro, were investigated. We find that transport in non-infected cells, which is mediated by the specific saturable T system and the apparently non-saturable L system (Rosenberg, Young and Ellory (1980) Biochim. Biophys. Acta 598, 375-384) is considerably enhanced by blood preservation and culture conditions. This increase is mostly due to an increase in the maximal velocity of the saturable component and of the rate constant of the linear component. Uptake is further enhanced in non-infected cells by factors released from infected cells into the culture medium and, even more so, in infected cells at the advanced stage of intraerythrocytic parasite development. At these stages the susceptibility of the transport system to the non-specific inhibitor phloretin and to the competitive inhibitor phenylalanine, is virtually lost. The effect of the parasite on L-tryptophan uptake by the host cell membrane is exerted only on the maximal velocity of the T system, which is carrying most of the substrate under physiological conditions. The possible implications of these findings to the life of the intraerythrocytic parasite are briefly discussed.  相似文献   

19.
20.
Chromosomes of malaria parasites   总被引:9,自引:0,他引:9  
The advent of pulsed field gradient electrophoresis has proved remarkably useful for studying chromosomes of the genetically intractable malaria parasite Plasmodium falciparum. Advances include determination of the karyotype, a linkage map and restriction maps of individual chromosomes that enable the ordering of genes. The structural basis underlying a frequently occurring form of chromosome size polymorphism is now understood and other polymorphisms are providing tantalizing clues to the mechanisms underlying drug resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号