首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Summary By use of an antibody against the 14 amino acids in the mutated vasopressin precursor (CP-14) characteristic of the homozygous Brattleboro rat, an immunohisto- and-cytochemical study was performed on the supraoptic nuclei of homozygous Brattleboro rats. At the light-microscopic level, varying numbers of perikarya per section exhibited a positive reaction. The most intense staining was observed in a patchy manner on the peripheral portions of the cytoplasm, its central portion being stained less intensely. The antiserum did not react with the supraoptic perikarya of the Wistar rat. In the homozygous Brattleboro rat, antibodies against normal vasopressin only rarely resulted in a positive immunoreaction. However, when it was observed, incubation of the subsequent section with CP-14-antiserum suggested a co-localization of both peptides in the same perikaryon. At the ultrastructural level, CP-14 immunoreactivity was demonstrated on the secretory cisternae of the Golgi apparatus, on lysosome-like bodies and on parts of the rough endoplasmic reticulum. With the use of an antibody against normal vasopressin, immunoreactivity was confined to very limited areas of the rough endoplasmic reticulum. The oxytocin immunoreactivity in supraoptic perikarya of Brattleboro rats did not differ from that in the Wistar rat, either at the light- or at the electron-microscopic levels.  相似文献   

2.
Summary CP-14, a tetradecapeptide from the predicted mutant vasopressin precursor in the homozygous Brattleboro rat was detected immunocytochemically in the supraoptic nucleus of homozygous Brattleboro but not normal rats. The staining was localized to the periphery of the perikarya. CP-14 immunoreactivity was not found in the neural lobes, paraventricular nuclei, accessory nuclei or suprachiasmatic nuclei of either homozygous Brattleboro or normal rats. Vasopressin immunoreactivity was found in the neural lobe and in the perinuclear region of neurons of the supraoptic, paraventricular, suprachiasmatic and accessory nuclei of normal rats. Vasopressin immunoreactivity was also found in homozygous Brattleboro rats, mainly in the ventral part of the supraoptic nucleus: densely stained solitary cells were found amongst other faintly stained perikarya. In both cell-types the staining was mainly in the periphery of the perikarya. No vasopressin immunoreactivity was detected in the paraventricular nuclei, suprachiasmatic nuclei, accessory nuclei or neural lobe of homozygous Brattleboro rats.CP-14 and vasopressin immunoreactivities were found to be co-localized; both were present in the periphery of the same perikarya of the supraoptic nuclei of homozygous Brattleboro rats. Differential staining was found with antioxytocin serum in both normal rats and homozygous Brattleboro rats: separate neurons were stained for either oxytocin or vasopressin and CP-14. Immunoreactive oxytocin was found mainly in the perinuclear region of the neurons from the supraoptic, paraventricular and accessory nuclei.  相似文献   

3.
Summary Immuno-enzyme cytochemical investigations have shown that, (1) the hypothalamic supraoptic and paraventricular nuclei of the Brattleboro rat, as in the normal rat, contain separate neurons which produce oxytocin + neurophysin; (2) the hereditary inability of the Brattleboro rat to synthesize vasopressin and its associated neurophysin is due to a biochemical defect of separate neurophysin-vasopressin neurons in the supraoptic and the paraventricular nuclei. These observations strongly support the hypotheses that (1) vasopressin and its associated neurophysin are formed via a common precursor, and (2) the initial point of intracellular appearance of the hereditary defect in the Brattleboro rat lies in the synthesis of this precursor, which occurs on ribosomes.Moreover, observations have demonstrated that, in the Brattleboro rat, in addition to the hereditary inability of the hypothalamic magnocellular neurosecretory system to synthesize vasopressin, there also exists a similar hereditary defect in the hypothetical parvicellular suprachiasmatic-median eminence neurosecretory system.This paper is dedicated to Professor Dr. W. Bargmann, in honour of his 70th birthday.Presented in part at the meeting of the Belgian Society of Endocrinology May 17, 1975 (Vandesande et al., 1975d).  相似文献   

4.
Summary Antisera, with cross reactive antibodies removed by affinity chromatography, were used in the immunoperoxidase-bridge technique to study the distribution of oxytocin and vasopressin together with neurophysin in the hypothalamo-neurohypophysial system of the rat. The hormones were demonstrated in different areas of the supraoptic nucleus (SON) and paraventricular nucleus (PVN), in neurosecretory fibres of the hypothalamoneurohypophysial tract, median eminence, and in nerve terminals of the neurohypophysis. Intact normal and rats with hereditary hypothalamic diabetes insipidus (Brattleboro strain), and rats dehydrated by the administration of oral hypertonic saline were studied. In dehydrated rats the hormone concentration in the neurons, and the number of neurons containing hormone varied according to the time of dehydration stress.The observations support the hypotheses that: 1) oxytocin and oxytocinneurophysin, and vasopressin and vasopressin-neurophysin are synthesised in different neurons and are transported along different axons; 2) the SON and PVN are functionally indistinguishable in that neurons containing oxytocin or vasopressin are present in both nuclei; and 3) the two types of neurons respond to osmotic stimulation in a way that is qualitatively the same but quantitatively different.This work was supported by a grant from the Medical Research Council of New Zealand  相似文献   

5.
6.
The homozygote Brattleboro rat exhibits a hereditary diabetes insipidus due to a deficiency of vasopressin, the antidiuretic hormone. It has previously been shown that in this animal a single nucleotide deletion in the provasopressin gene leads to a mutant precursor with a C-terminal amino acid sequence different from that of the wild-type. However the N-terminal region including the hormone moiety, the processing signal as well as the first two-thirds of the neurophysin is entirely preserved and absence of maturation has to be explained by an additional cause. We show here that the neurohypophysis of the homozygote Brattleboro rat, in contrast to the adenohypophysis, displays a significant decrease in the Lys-Arg processing endopeptidase activity when compared to the heterozygote or the wild-type Wistar. It is suggested that hypothalamic vasopressinergic neurons of the homozygote Brattleboro rat display a deficiency in the processing enzyme in contrast to the oxytocinergic neurons in which processing of prooxytocin is normal.  相似文献   

7.
8.
Due to a genetic defect the homozygous Brattleboro rat is unable to synthesize vasopressin gene products but still transcribes a mutant vasopressin mRNA from the gene. To study the influence of vasopressin gene products on the development of vasopressin gene expression, vasopressin mRNA levels of the supraoptic and paraventricular nucleus were measured at fetal day 20, postnatal day 1, 15 and 30 in the Wistar rat and in the heterozygous and homozygous Brattleboro rat by Northern blot analysis and in situ hybridization. In the homozygous Brattleboro rat of fetal day 20 and postnatal day 1, no or minute amounts of vasopressin mRNA were detectable but vasopressin mRNA was readily detectable at postnatal day 15 and 30. The Wistar rat and heterozygous Brattleboro rat had abundant vasopressin mRNA at fetal day 20 with increasing amounts towards postnatal day 30. The results indicate that vasopressin gene expression in the development of the homozygous Brattleboro rat is attenuated, possibly due to the absence of vasopressin gene products.  相似文献   

9.
10.
High molecular weight kininogen (HKg) and T kininogen (TKg) were detected and localized by immunocytochemistry in adult rat hypothalamus. In addition, kininogens were measured by their direct radioimmunoassay (RIA) or by indirect estimation of kinins released after trypsin hydrolysis and high pressure liquid chromatography (HPLC) separation of bradykinin (BK) and T kinin. A specific HKg immunoreactivity demonstrated with antibodies directed against the light chain (LC) of HKg was colocated with SRIF in neurons of hypothalamic periventricular area (PVA) projecting to external zone (ZE) of median eminence (ME). Heavy chain (HC) immunoreactivity which could be related to HKg or to low molecular weight kininogen (LKg) was detected in some other systems: i) parvocellular neurons of suprachiasmatic (SCN) and arcuate nuclei containing SRIF, ii) magnocellular neurons (mostly oxytocinergic) of paraventricular (PVN) and supraoptic (SON) nuclei, iii) neurons of dorsomedian and lateral hypothalamic areas. TKg immunostaining was restricted to magnocellular neurons of PVN, SON, accessory nuclei (mostly vasopressinergic) and to parvocellular neurons of SCN (vasopressinergic). TKg projections are directed towards the internal zone (ZI) of ME, but very few immunoreactive terminals are detectable in neurohypophysis. TKg staining parallels with vasopressin during water deprivation, and is undetectable in homozygous Brattleboro rats. In some magnocellular neurons, TKg and HC (related to HKg or LKg) are coexpressed. TKg, was also detected in hypothalamus and cerebellum extracts by direct RIA, and BK and T kinin were identified after trypsin hydrolysis. HKg and LKg can act as precursor of BK which can play a physiological role as releasing factor, neuromodulator--neurotransmitter,--or modulator of local microcirculation in hypothalamus. The three kininogens are also potent thiolprotease inhibitors which could modulate both the maturation processes of peptidic hormones and their inactivation and catabolism.  相似文献   

11.
Summary High molecular weight kininogen (HKg) and T kininogen (TKg) were detected and localized by immunocytochemistry in adult rat hypothalamus. In addition, kininogens were measured by their direct radioimmunoassay (RIA) or by indirect estimation of kinins released after trypsin hydrolysis and high pressure liquid chromatography (HPLC) separation of bradykinin (BK) and T kinin. A specific HKg immunoreactivity demonstrated with antibodies directed against the light chain (LC) of HKg was colocated with SRIF in neurons of hypothalamic periventricular area (PVA) projecting to external zone (ZE) of median eminence (ME). Heavy chain (HC) immunoreactivity which could be related to HKg or to low molecular weight kininogen (LKg) was detected in some other systems: i) parvocellular neurons of suprachiasmatic (SCN) and arcuate nuclei containing SRIF, ii) magnocellular neurons (mostly oxytocinergic) of paraventricular (PVN) and supraoptic (SON) nuclei, iii) neurons of dorsomedian and lateral hypothalamic areas. TKg immunostaining was restricted to magnocellular neurons of PVN, SON, accessory nuclei (mostly vasopressinergic) and to parvocellular neurons of SCN (vasopressinergic). TKg projections are directed towards the internal zone (ZI) of ME, but very few immunoreactive terminals are detectable in neurohypophysis. TKg staining parallels with vasopressin during water deprivation, and is undetectable in homozygous Brattleboro rats. In some magnocellular neurons, TKg and HC (related to HKg or LKg) are coexpressed. TKg, was also detected in hypothalamus and cerebellum extracts by direct RIA, and BK and T kinin were identified after trypsin hydrolysis. HKg and LKg can act as precursor of BK which can play a physiological role as releasing factor, neuromodulator — neurotransmitter, — or modulator of local microcirculation in hypothalamus. The three kininogens are also potent thiolprotease inhibitors which could modulate both the maturation processes of peptidic hormones and their inactivation and catabolism.  相似文献   

12.
13.
We analyzed expression of the vasopressin (AVP) gene in semi-thin sections in normal and Brattleboro rats by using in situ hybridization and immunohistochemistry. AVP mRNA was detected as follows: vibratome sections of rat hypothalamus were hybridized with a biotinylated oligonucleotide probe, embedded in Araldite, and cut into semi-thin sections which were reacted with streptavidin-alkaline phosphatase and the appropriate substrate. Adjacent serial sections were treated by immunohistochemistry to detect AVP or oxytocin immunoreactivity. In normal rat, AVP mRNA can be detected in magnocellular neurons of the supraoptic and paraventricular nuclei and in parvocellular neurons of the suprachiasmatic nucleus. AVP mRNA was present throughout the cytoplasm of the cell bodies, their processes, and in punctate structures in the vicinity of the AVP cell bodies. Most neurons containing AVP mRNA also contain AVP immunoreactivity, but the staining intensity was not consistently correlated for each reaction. A few neurons contained AVP mRNA without detectable AVP immunoreactivity. In the Brattleboro rat, staining intensity of the reaction was lower than in normal rat and the AVP mRNA was restricted mostly to the periphery of the cytoplasm. In this strain, the neurons containing the AVP mRNA did not contain AVP or oxytocin immunoreactivity. These results demonstrate that neuropeptide mRNA can be detected in semi-thin sections with a biotinylated oligonucleotide probe, and that AVP gene deletion provokes modification of the intracellular localization of the AVP mRNA.  相似文献   

14.
A novel immunological approach to the problem of the detection and molar evaluation of vasopressin precursors was taken. First, the specificity of anti-vasopressin antibodies was studied and the hormone antigenic determinant was identified as the sequence Cys-Pro-Arg-Gly-NH2. Then this antigenic determinant, not originally shared by the precursors, was reconstituted by tryptic cleavage followed by chemical fixation of glycinamide. This treatment made quantification of precursors by radioimmunoassay possible at a fmol level in various tissues. In normal rat, precursors were found only in the supraoptic nucleus (192 pmol/mg protein), paraventricular nucleus, median eminence and posterior lobe of the hypophysis. The maturation process was followed by the decrease of the ratio of precursor to hormone from 4-5 to 0.02 along the hypothalamo-hypophysial axis. In Brattleboro rats, genetically deficient in vasopressin, no precursor could be detected over the background level; that ensures the specificity and reliability of this approach.  相似文献   

15.
The rat vasopressin precursor, synthesized in the reticulocyte lysate system under the direction of in vitro transcribed mRNA, is processed and correctly delivered to the lumen of added microsomal vesicles. Translation of mRNA for the mutant (Brattleboro) vasopressin precursor which lacks a translational stop codon as a consequence of a frame-shift mutation, gives rise to a mutated protein (B-mutant precursor) with a C-terminal poly(lysine) sequence encoded by the poly(A) tail. Upon addition of microsomal membranes, the mutated precursor has access to the lumen of the vesicles as indicated by removal of the signal peptide; however, the C-terminal part with the poly(lysine) tail remains outside the vesicles as shown by its sensitivity to proteinase K. When a modified RNA, including a stop codon located similarly to that found in the cDNA encoding the normal precursor, is translated in the presence of microsomal membranes, the resulting product (S-mutant precursor) is refractory to proteolysis by exogenously added proteinase K. Analysis of the microsomal membranes indicates, however, that the C-terminus of the S-mutant precursor is still anchored within membranes. For studying the intracellular transport of the mutated precursor Xenopus laevis oocytes were injected with various RNA constructs. To monitor the transport steps from the endoplasmic reticulum to the Golgi compartment an RNA encoding a glycosylation site within the S-mutant precursor sequence was constructed. The resulting GS-mutant precursor is synthesized in the oocyte but not secreted into the incubation medium, completely in contrast to the normal vasopressin precursor which can be detected in the incubation bath 4 h after injection of the respective RNA. The sensitivity of the GS-mutant precursor carbohydrate side chain to endoglycosidase H treatment suggests that the mutated precursor does not reach the Golgi apparatus.  相似文献   

16.
Preference for alcohol was determined for three groups of male and female rats, 100–150 days old, comprised of: (1) Long Evans (LE); (2) LE-derived Brattleboro heterozygous (HZ); and (3) Brattleboro homozygous (DI) animals afflicted with diabetes insipidus due to vasopressin deficiency. Each alcohol drinking test was run over 11 days during which food, water and an ethyl alcohol solution, increased in concentration from 3% to 25%, were freely available. Following an initial preference screen, 100 milli-units of vasopressin tannate in oil was administered subcutaneously, during a second preference test, once per day to each animal. This treatment ameliorated the polydipsia-polyuria syndrome characteristic of the DI sub-strain of Brattleboro rat. Administration of the peptide to both the LE or HZ animals exerted no effect on g/kg intake nor on the proportional measure of alcohol to water. However, in the DI rat of either gender, vasopressin reduced the mean absolute gram intake of alcohol over concentrations to resemble that of the other LE and/or HZ groups. These results demonstrate that vasopressin serves to normalize the intake of alcohol in the DI rat by virtue of the elimination of the diabetic condition. However, since vasopressin fails to alter alcohol consumption of the HZ and LE rats, it would appear that this neuroactive peptide may play only a minor role in the CNS mechanisms governing the voluntary selection of alcohol.  相似文献   

17.
M H Whitnall  M Castel  S Key  H Gainer 《Peptides》1985,6(2):241-247
Vasopressin and its carrier protein, vasopressin-associated neurophysin, are co-packaged together with an opioid peptide, dynorphin, into 160 nm diameter neurosecretory vesicles in the normal rat hypothalamo-neurohypophysial system. The homozygous Brattleboro rat lacks vasopressin and vasopressin-associated neurophysin, but contains substantial amounts of dynorphin in the vasopressin-deficient neurosecretory cells. We used post-embedding electron microscopic immunocytochemistry to determine the subcellular location of dynorphin in Brattleboro rats. The results show that dynorphin is present within 100 nm neurosecretory vesicles in homozygous Brattleboro cell bodies and axons, and within 160 nm vesicles in heterozygous (control) neurosecretory cell bodies and axons. Oxytocin-associated neurophysin is present in a separate population of magnocellular neurons in both homozygous and heterozygous rats, and is contained within 160 nm vesicles in both cases. Therefore, the absence of synthesis of the vasopressin prohormone results in a dramatic reduction of neurosecretory vesicle size, despite the continued synthesis and packaging of dynorphin peptides.  相似文献   

18.
The growth pattern of the Walker 256 solid tumor has been studied in rats with different doses of the mutant vasopressin gene. In contrast to the vasopressin gene of normal WAG rats, that of mutant Brattleboro rats has a deletion in the coding region that blocks expression at the translation level. The mutation is inherited as a recessive character and is expressed in homozygous Brattleboro rats as diabetes insipidus with an increased water consumption because of the absence of vasopressin in the blood. (WAG × Brattleboro) F1 hybrids have the same normal phenotype as WAG rats, including a low water consumption. Walker 256 carcinosarcoma, which is not strain-specific, intensely grows only in WAG and (WAG × Brattleboro) F1 rats. In these groups, the growth of the tumor leads to the animal death within approximately 30 days after the inoculation of tumor cells. In Brattleboro rats, the carcinosarcoma grows less intensely: the tumor node somewhat increases only within the first two weeks, after which the tumor began to decrease and eventually disappears altogether. Both characters exhibit a 100% concordance at the individual level.  相似文献   

19.
A reverse-phase high performance liquid-chromatography (h.p.l.c.) protocol has been developed, whereby all the major known posterior-pituitary components that are derived from the processing of pro-oxytocin and pro-vasopressin can be separated one from another. Thus, in a single chromatographic step, it has been possible to separate vasopressin (VP), oxytocin (OT), oxytocin-neurophysin (rOT-Np), vasopressin-neurophysin (rVP-Np) and vasopressin-glycopeptide (rVP-GP) from acid extracts of the neurointermediate lobes of rat pituitary glands. All these peptides except rVP-GP were labelled in the neural lobe by 24h after a hypothalamic injection of [35S]cysteine, whereas all except VP were labelled by 24h after a similar injection of [3H]leucine. Three major labelled proteins were isolated from 20 min [35S]cysteine-injected rats when extracts of the supraoptic nucleus were subjected to Sephadex G-75 chromatography, h.p.l.c. and sodium dodecyl sulphate/polyacrylamide-gel electrophoresis. Immunoprecipitation with antisera raised against rat neurophysins, VP and OT revealed 21000- and 19000-mol.wt. common precursors to VP and rVP-Np and a 15000-mol.wt. common precursor to OT and rOT-Np. Some immunoreactive rVP-Np could occasionally be detected in the Vo of Sephadex G-75 chromatograms of Wistar rat supraoptic-nucleus extracts, but no evidence of [35S]neurophysin in this fraction was obtained from h.p.l.c. fingerprinting of its S-carboxymethylated tryptic digests. Radioimmunoassay for rVP-Np and rOT-Np revealed that about 70-80% of the total recovered immunoreactive neurophysin (IR-Np) in the supraoptic nucleus eluted from Sephadex G-75 and h.p.l.c. in the positions of rVP-Np and rOT-Np. Evidence is presented for an approx. 20000-mol.wt. rOT-Np in both Wistar and Brattleboro rats and for an approx. 20000-mol.wt. component in the Brattleboro rat that is recognized by vasopressin-neurophysin antisera.  相似文献   

20.
The effects of vasopressin on the short-term control of fatty acid metabolism were studied in isolated rat hepatocytes. Vasopressin increased the oxidation of oleate to CO2 and decreased the formation of ketones in hepatocytes from Wistar rats, but not from Brattleboro rats. Incubation with vasopressin for 30 min increased the conversion of oleate into triacylglycerol by 17% and 32% in hepatocytes from Wistar and Brattleboro rats respectively. The corresponding increases for the phospholipid fraction were 19% and 42%. When Wistar-rat hepatocytes were incubated with corticosterone for 6 h there was a 19% increase in triacylglycerol synthesis, and a 52% increase if vasopressin was added 30 min before the end of the incubation. Glycerol phosphate acyltransferase activity was not significantly increased by vasopressin. Incubation for 5-60 min with vasopressin increased the Vmax. of phosphatidate phosphohydrolase by 48% and 32% respectively in hepatocytes from Wistar and Brattleboro rats. These increases were antagonized if EGTA was added to the medium used for incubating the hepatocytes. The replacement of vasopressin by 5 microM-ionophore A23187 produced a significant increase of 13% in the phosphohydrolase activity. It is therefore likely that the effects of vasopressin on the phosphohydrolase are mediated by Ca2+. These results are discussed in relation to the possible function of phosphatidate phosphohydrolase in controlling the turnover of phosphoinositides, the synthesis of phosphatidylethanolamine, phosphatidylcholine and triacylglycerol, and the secretion of very-low-density lipoproteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号