首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
组蛋白作为核小体的基本组分,是染色质的结构和功能必需的。组蛋白的变体和修饰共同参与染色质修饰及基因的表达调控。真核生物细胞中的5种组蛋白在进化中高度保守,然而纤毛虫的组蛋白H4与其他真核生物相比有较大的差异。本实验应用PCR技术从八肋游仆虫(Euplotes octocarinatus)中获得了2种组蛋白H4基因,分别为H4A和H4B,GenBank登录号为:JN715068和JN715069。序列分析表明,H4A基因开放阅读框324 bp,预测编码107个氨基酸,分子量为11.6 ku,等电点为10.99。而H4B基因编码框384 bp,编码127个氨基酸,分子量为14.4 ku,等电点为9.93。Blast结果显示,H4A序列与其他生物中H4的一致性相对较高,达81%~94%,而H4B的一致性为36%~70%。H4A和H4B的一致性仅为44.7%。实时荧光定量PCR表明,H4A的转录本高于H4B。结果提示:在进化过程中八肋游仆虫可能进化出特殊的组蛋白H4基因,不同的组蛋白H4可能发挥不同的功能。  相似文献   

10.
11.
The cultivated peanut (Arachis hypogaea L.) is an allotetraploid composed of A and B genomes. The phylogenetic relationship among the cultivated peanut, wild diploid, and tetraploid species in the section Arachis was studied based on sequence comparison of stearoyl-ACP desaturase and oleoyl-PC desaturase. The topology of the trees for both fatty acid desaturases displayed two clusters; one cluster with A genome diploid species and the other with B genome diploid species. The two homeologous genes obtained for each of the two fatty acid desaturases from the tetraploid species A. hypogaea and A. monticola were separated into the A and B genome clusters, respectively. The gene phylogenetic trees showed that A. hypogaea is more closely related to the diploid species A. duranensis and A. ipaensis than to the wild tetraploid species A. monticola, suggesting that A. monticola is not a progenitor of the cultivated peanut. In addition, for the stearoyl-ACP desaturase, the A. duranensis sequence was identical with one of the sequences of A. hypogaea and the A. ipaensis sequence was identical with the other. These results support the hypothesis that A. duranensis and A. ipaensis are the most likely diploid progenitors of the cultivated tetraploid A. hypogaea.  相似文献   

12.
In cultivated tetraploid peanut (2n = 4x = 40, AABB), the conversion of oleic acid to linoleic acid is mainly catalyzed by the Δ12 fatty acid desaturase (FAD). Two homoeologous genes (FAD2A and FAD2B) encoding for the desaturase are located on the A and B genomes, respectively. Abolishing or reducing the desaturase activity by gene mutation can significantly increase the oleic acid/linoleic acid ratio. F435-derived high-oleate peanut cultivars contain two key mutations within the Δ12 fatty acid desaturase gene which include a 1-bp substitution of G:C→A:T in the A genome and a 1-bp insertion of A:T in the B genome. Both of these mutations contribute to abolishing or reducing the desaturase activity, leading to accumulation of oleate versus linoleate. Currently, detection of FAD2 alleles can be achieved by a cleaved amplified polymorphic sequence marker for the A genome and a real-time polymerase chain reaction (PCR) marker for the B genome; however, detection of these key mutations has to use different assay platforms. Therefore, a simple PCR assay for detection of FAD2 alleles on both genomes was developed by designing allele-specific primers and altering PCR annealing temperatures. This assay was successfully used for detecting FAD2 alleles in peanut. Gas chromatography (GC) was used to determine fatty acid composition of PCR-assayed genotypes. The results from the PCR assay and GC analysis were consistent. This PCR assay is quick, reliable, economical, and easy to use. Implementation of this PCR assay will greatly enhance the efficiency of germplasm characterization and marker-assisted selection of high oleate in peanut.  相似文献   

13.
14.
本研究利用等位基因特异性PCR技术(AS-PCR,allele-specific PCR)对高油酸父本CTWE与4个低油酸母本组配的330个杂交后代进行分子鉴评,其中230个获得了539 bp的特异性条带。白沙1016×CTWE、海花1号×CTWE、冀0212-2×CTWE以及远杂9847×CTWE的真杂种百分率分别为83.3%、50.0%、57.1%和50.0%。本研究采用单粒近红外光谱分析法对F2:3家系进行检测,结果表明远杂9847×CTWE、白沙1016×CTWE、冀0212-2×CTWE以及海花1号×CTWE的F2:3家系中,全部为高油酸类型的家系分别为9个、8个、2个和3个,推断F2群体中,基因型为FAD2B-m/FAD2B-m的个体的比例为9.47%、4.17%、3.39%和3.37%。4个杂交组合高油酸性状的遗传在P=0.05水平上符合2对基因的遗传模式。本研究结果对于高油酸性状的分子鉴定、高油酸花生新品种的培育以及育种效率的提高具有一定的参考价值。  相似文献   

15.
16.
The regiospecificity for the gene product of fad2,(1) the microsomal oleoyl-PC desaturase from higher plants, differs from some previous suggestions. Rather than only referencing the carboxyl group (a Delta(12) desaturase) or the methyl terminus (an omega-6 desaturase), this desaturase locates the second double bond in its substrates by first referencing the existing double bond. This specificity was demonstrated for the oleoyl-PC desaturase cDNA from the developing seeds of peanut (Arachis hypogaea L) expressed in yeast (Saccharomyces cerevisae). The expressed enzyme was capable of desaturating monounsaturated fatty acyl groups in membrane lipids. Endogenous palmitoleate was desaturated to cis, cis 9,12 hexadecadienoate (9(Z)12(Z)C16:2), endogenous oleate to linoleate (9(Z)12(Z) octadecadienoate), and cis 10-nonadecenoate (provided as a supplement in the growth medium) to 10(Z)13(Z)C19:2. The rule, Delta(x+3) where x=9 is the double bond location in the substrate, best describes the consistent placement of the second double bond in the above monounsaturated substrates for the oleoyl-PC desaturase of higher plants.  相似文献   

17.
18.
The effects of the addition of hypolipidemic drugs and 1-acylglycerolipids on the metabolism of oleate in plants have been studied in vivo and in vitro. Using aged potato slices with [14C]oleate as a precursor, it was found that these drugs markedly inhibited both the incorporation into complex lipids and the desaturation of oleate to linoleate. Moreover, in vitro experiments, carried out with microsomes prepared from developing safflower seeds and [14C]oleate or [14C]oleoyl-CoA as precursors, confirmed the inhibitory effect of the drugs on oleate desaturation, and showed that while WY14643 mainly affected oleoyl thiokinase activity, DH990 exerted its strongest effect on the formation of PL, indicating that the mode of action of these two drugs in safflower microsomes is essentially different. Addition of LPC or LPE stimulated the incorporation of radiolabeled precursor into PC and PE, respectively, as well as the desaturation of oleate to linoleate when [14C]oleoyl-CoA was the precursor. The evidence obtained suggests that oleoyl-PE, as well as oleoyl-PC, should be considered as a possible substrate for oleate desaturation in plants.  相似文献   

19.
20.
?8-sphingolipid desaturase is characterized by its ability to catalyze desaturation at the C8 position of the long-chain base of sphingolipids in plants. No previous studies have been conducted on genes encoding Δ8-sphingolipid desaturases in the woody plant Populus tomentosa. In this study, three genes that encode Δ8-sphingolipid desaturase were isolated from P. tomentosa. Among these genes, PtD8A and PtD8B showed high sequence similarity; whereas PtD8C exhibited large sequence divergence. RT-PCR results showed that PtD8A and PtD8B were expressed in all tissues detected, whereas PtD8C was not expressed in roots. Heterologous expression in yeast revealed that PtD8A/B/C were functional Δ8-sphingolipid desaturases, and can catalyze the C18-phytosphingenine desaturation to produce 8(Z)- and 8(E)-C18-phytosphingenine. However, the conversion rate and ratios of the two products differed. Compared with control cells, transgenic yeasts expressing PtD8A/B/C exhibited enhanced aluminum tolerance. Our findings further elucidated the biochemical functions and evolutionary history of Δ8-sphingolipid desaturases in plants. Candidate genes for breeding new poplar germplasm resources with enhanced tolerance ability to aluminium were also provided.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号