首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Phenotypic variants of Pseudomonas fluorescens F113 showing a translucent and diffuse colony morphology show enhanced colonization of the alfalfa rhizosphere. We have previously shown that in the biocontrol agent P. fluorescens F113, phenotypic variation is mediated by the activity of two site-specific recombinases, Sss and XerD. By overexpressing the genes encoding either of the recombinases, we have now generated a large number of variants (mutants) after selection either by prolonged laboratory cultivation or by rhizosphere passage. All the isolated variants were more motile than the wild-type strain and appear to contain mutations in the gacA and/or gacS gene. By disrupting these genes and complementation analysis, we have observed that the Gac system regulates swimming motility by a repression pathway. Variants isolated after selection by prolonged cultivation formed a single population with a swimming motility that was equal to the motility of gac mutants, being 150% more motile than the wild type. The motility phenotype of these variants was complemented by the cloned gac genes. Variants isolated after rhizosphere selection belonged to two different populations: one identical to the population isolated after prolonged cultivation and the other comprising variants that besides a gac mutation harbored additional mutations conferring higher motility. Our results show that gac mutations are selected both in the stationary phase and during rhizosphere colonization. The enhanced motility phenotype is in turn selected during rhizosphere colonization. Several of these highly motile variants were more competitive than the wild-type strain, displacing it from the root tip within 2 weeks.  相似文献   

2.
Phenotypic variants of Pseudomonas fluorescens F113 showing a translucent and diffuse colony morphology show enhanced colonization of the alfalfa rhizosphere. We have previously shown that in the biocontrol agent P. fluorescens F113, phenotypic variation is mediated by the activity of two site-specific recombinases, Sss and XerD. By overexpressing the genes encoding either of the recombinases, we have now generated a large number of variants (mutants) after selection either by prolonged laboratory cultivation or by rhizosphere passage. All the isolated variants were more motile than the wild-type strain and appear to contain mutations in the gacA and/or gacS gene. By disrupting these genes and complementation analysis, we have observed that the Gac system regulates swimming motility by a repression pathway. Variants isolated after selection by prolonged cultivation formed a single population with a swimming motility that was equal to the motility of gac mutants, being 150% more motile than the wild type. The motility phenotype of these variants was complemented by the cloned gac genes. Variants isolated after rhizosphere selection belonged to two different populations: one identical to the population isolated after prolonged cultivation and the other comprising variants that besides a gac mutation harbored additional mutations conferring higher motility. Our results show that gac mutations are selected both in the stationary phase and during rhizosphere colonization. The enhanced motility phenotype is in turn selected during rhizosphere colonization. Several of these highly motile variants were more competitive than the wild-type strain, displacing it from the root tip within 2 weeks.  相似文献   

3.
Motility is a key trait for rhizosphere colonization by Pseudomonas fluorescens. Mutants with reduced motility are poor competitors, and hypermotile, more competitive phenotypic variants are selected in the rhizosphere. Flagellar motility is a feature associated to planktonic, free‐living single cells, and although it is necessary for the initial steps of biofilm formation, bacteria in biofilm lack flagella. To test the correlation between biofilm formation and rhizosphere colonization, we have used P. fluorescens F113 hypermotile derivatives and mutants affected in regulatory genes which in other bacteria modulate biofilm development, namely gacS (G), sadB (S) and wspR (W). Mutants affected in these three genes and a hypermotile variant (V35) isolated from the rhizosphere were impaired in biofilm formation on abiotic surfaces, but colonized the alfalfa root apex as efficiently as the wild‐type strain, indicating that biofilm formation on abiotic surfaces and rhizosphere colonization follow different regulatory pathways in P. fluorescens. Furthermore, a triple mutant gacSsadBwspR (GSW) and V35 were more competitive than the wild‐type strain for root‐tip colonization, suggesting that motility is more relevant in this environment than the ability to form biofilms on abiotic surfaces. Microscopy showed the same root colonization pattern for P. fluorescens F113 and all the derivatives: extensive microcolonies, apparently held to the rhizoplane by a mucigel that seems to be plant produced. Therefore, the ability to form biofilms on abiotic surfaces does not necessarily correlates with efficient rhizosphere colonization or competitive colonization.  相似文献   

4.
The eubacterial flagellum is a complex structure with an elongated extracellular filament that is composed primarily of many subunits of a flagellin protein. The highly conserved N and C termini of flagellin are important in its export and self-assembly, whereas the middle sequence region varies greatly in size and composition in different species and is known to be deletion-tolerant. In Salmonella typhimurium phase 1 flagellin, this "hypervariable" region encodes two solvent-exposed domains, D2 and D3, that form a knob-like feature on flagella fibers. The functional role of this structural feature in motility remains unclear. We investigated the structural and physiological role of the hypervariable region in flagella assembly, stability and cellular motility. A library of random internal deletion variants of S. typhimurium flagellin was constructed and screened for functional variants using a swarming agar motility assay. The relative cellular motility and propulsive force of ten representative variants were determined in semi-solid and liquid medium using colony swarming motility assays, video microscopy and optical trapping of single cells. All ten variants exhibited diminished motility, with varying extents of motility observed for internal deletions less than 75 residues and nearly complete loss of motility for deletions greater than 100 residues. The mechanical stability of the variant flagella fibers also decreased with increasing size of deletion. Comparison of the variant sequences with the wild-type sequence and structure indicated that all deletions involved loss of hydrophobic core residues, and removal of both partial and complete segments of secondary structure in the D2 and D3 domains. Homology modeling predicted disruptions of secondary structures in each variant. The hypervariable region D2 and D3 domains appear to stabilize the folded conformation of the flagellin protein and contribute to the mechanical stability and propulsive force of the flagella fibers.  相似文献   

5.
The state of metabolic dormancy in diazotrophic bacteria Azospirillum brasilense Sp7 (non-endophytic strain) and Sp245 (endophytic strain) was found to be associated with phenotypic variability. The latter manifested itself in the extension of the spectrum of A. brasilense phenotypic variants resulting from plating of cyst-like resting cells (CRC) on solid media and was more pronounced in strain Sp7. The major colony’s morphological variants of strain Sp7 were (1) the dominant S type; (2) the highly pigmented Pg type; (3) the R type; (4) the Sm type, forming small colonies; and (5) the Sg type, forming segmented colonies. In addition to their colony morphology, the variants differed in the phenotype stability during transfers on the standard solid medium and in their motility in semisolid agar. The occurrence frequency of the phenotypic variants depended on the conditions and duration of incubation (storage) of the CRC of strain Sp7, as well as on heat treatment (at 55 and 60°C for 10 min) of the cells prior to inoculation. The maximum frequency of S → Pg transitions (up to 74%) was observed during the germination of CRC stored in a spent culture medium at −20°C for 4 months; the maximum frequency (up to 100%) of S → Sm transitions was observed after inoculation of the CRC subjected to heat treatment. The Pg variants were the most stable, whereas other types reverted rapidly to the S or Pg variant. The S variant grown in semisolid agar exhibited the mixed type of motility (Swa+Gri+, swarming and migration in the form of microcolonies); the Pg and Sg variants showed the Swa+Gri (swarming) phenotype and the Sm variant was nonmotile (SwaGri phenotype). The spectrum of phenotypic variants of the endophytic strain Sp245 was narrower than that of strain Sp7 and was represented by S, Sm, and M (mucoid) variants that differed in the patterns of cell motility: the dominant S type displayed the swarming pattern (Swa+Gri), the mucoid M type showed the mixed type (Swa+Gri+) of motility, and the Sm variant was nonmotile. The differences between the nonendophytic strain Sp7 and the endophytic strain Sp245 in their capacity for phenotypic dissociation and cell motility in semisolid media may reflect their ability to adapt to changing ambient conditions and specificity of plant-microbial interactions.  相似文献   

6.
Colony phase variation is a regulatory mechanism at the DNA level which usually results in high frequency, reversible switches between colonies with a different phenotype. A number of molecular mechanisms underlying phase variation are known: slipped-strand mispairing, genomic rearrangements, spontaneous mutations and epigenetic mechanisms such as differential methylation. Most examples of phenotypic variation or phase variation have been described in the context of host-pathogen interactions as mechanisms allowing pathogens to evade host immune responses. Recent reports indicate that phase variation is also relevant in competitive root colonization and biological control of phytopathogens. Many rhizospere Pseudomonas species show phenotypic variation, based on spontaneous mutation of the gacA and gacS genes. These morphological variants do not express secondary metabolites and have improved growth characteristics. The latter could contribute to efficient root colonization and success in competition, especially since (as shown for one strain) these variants were observed to revert to their wild-type form. The observation that these variants are present in rhizosphere-competent Pseudomonas bacteria suggests the existence of a conserved strategy to increase their success in the rhizosphere.  相似文献   

7.
Xenorhabdus spp., entomopathogenic bacteria symbiotically associated with nematodes of the family Steinernematidae, occur spontaneously in two phases. Phase I, the variant naturally isolated from the infective-stage nematode, provides better conditions than the phase II variant for nematode reproduction. This study has shown that Xenorhabdus phase I variants displayed a swarming motility when they were grown on a suitable solid medium (0.6 to 1.2% agar). Whereas most of the phase I variants from different Xenorhabdus spp. were able to undergo cycle of rapid and coordinately population migration over the surface, phase II variants were unable to swarm and even to swim in semisolid agar, particularly in X. nematophilus. Optical and electron microscopic observations showed nonmotile cells with phase II variants of X. nematophilus F1 which lost their flagella. Flagellar filaments from strain F1 phase I variants were purified, and the molecular mass of the flagellar structural subunit was estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis to be 36.5 kDa. Flagellin from cellular extracts or culture medium of phase II was undetectable with antiserum against the denatured flagellin by immunoblotting analysis. This suggests that the lack of flagella in phase II cells is due to a defect during flagellin synthesis. The importance of such a difference of motility between both phases is discussed in regard to adaptation of these bacteria to the insect prey and the nematode host.  相似文献   

8.
9.
10.
Acidovorax radicis N35, isolated from surface-sterilized wheat roots (Triticum aestivum), showed irreversible phenotypic variation in nutrient broth, resulting in a differing colony morphology. In addition to the wild-type form (rough colony type), a phenotypic variant form (smooth colony type) appeared at a frequency of 3.2?×?10(-3) per cell per generation on NB agar plates. In contrast to the N35 wild type, the variant N35v showed almost no cell aggregation and had lost its flagella and swarming ability. After inoculation, only the wild-type N35 significantly promoted the growth of soil-grown barley plants. After co-inoculation of axenically grown barley seedlings with differentially fluorescently labeled N35 and N35v cells, decreased competitive endophytic root colonization in the phenotypic variant N35v was observed using confocal laser scanning microscopy. In addition, 454 pyrosequencing of both phenotypes revealed almost identical genomic sequences. The only stable difference noted in the sequence of the phenotype variant N35v was a 16-nucleotide deletion identified in a gene encoding the mismatch repair protein MutL. The deletion resulted in a frameshift that revealed a new stop codon resulting in a truncated MutL protein missing a functional MutL C-terminal domain. The mutation was consistent in all investigated phenotype variant cultures and might be responsible for the observed phenotypic variation in A.?radicis N35.  相似文献   

11.
Pseudomonas syringae pv. syringae B728a, a causal agent of bacterial brown spot on snap beans, swarms with a characteristic dendritic pattern on semisolid (0.4%) agar plates. Filamentation of swarming cells of B728a was not observed. Mutations in either the gacS (formerly lemA) or gacA gene of B728a eliminate the ability of this P. syringae isolate to swarm without obvious effects on bacterial motility. Three field isolates showed a similar dependence on gacS for swarming. Since gacS and gacA mutants are known to be deficient in N-acyl-L-homoserine lactone (acyl-HSL) production, a mutant was constructed by disruption of the ahlI gene of B728a. This mutant did not make any acyl-HSL detectable by the Agrobacterium traG::lacZ reporter system, yet was unaffected in its ability to swarm. Other phenotypes of gacS and gacA mutations were similarly unaffected in the ahlI mutant.  相似文献   

12.
The Pseudomonas community structure and antagonistic potential in the rhizospheres of strawberry and oilseed rape (host plants of the fungal phytopathogen Verticillium dahliae) were assessed. The use of a new PCR-DGGE system, designed to target Pseudomonas-specific gacA gene fragments in environmental DNA, circumvented common biases of 16S rRNA gene-based DGGE analyses and proved to be a reliable tool to unravel the diversity of uncultured Pseudomonas in bulk and rhizosphere soils. Pseudomonas-specific gacA fingerprints of total-community (TC) rhizosphere DNA were surprisingly diverse, plant-specific and differed markedly from those of the corresponding bulk soils. By combining multiple culture-dependent and independent surveys, a group of Pseudomonas isolates antagonistic towards V. dahliae was shown to be genotypically conserved, to carry the phlD biosynthetic locus (involved in the biosynthesis of 2,4-diacetylphloroglucinol - 2,4-DAPG), and to correspond to a dominant and highly frequent Pseudomonas population in the rhizosphere of field-grown strawberries planted at three sites in Germany which have different land use histories. This population belongs to the Pseudomonas fluorescens phylogenetic lineage and showed closest relatedness to P. fluorescens strain F113 (97% gacA gene sequence identity in 492-bp sequences), a biocontrol agent and 2,4-DAPG producer. Partial gacA gene sequences derived from isolates, clones of the strawberry rhizosphere and DGGE bands retrieved in this study represent previously undescribed Pseudomonas gacA gene clusters as revealed by phylogenetic analysis.  相似文献   

13.
The plant-growth promoting rhizobacterium Azospirillum lipoferum strain 4B generates in vitro a stable phase variant designated 4VI at frequencies of 10(-4) to 10(-3) per cell per generation. Variant 4VI displays pleitropic modifications, such as the loss of swimming motility and the inability to assimilate certain sugars compared to the wild type. The mechanism underlying phase variation is unknown. To determine whether RecA-mediated processes are involved in phase variation, the recA gene of A. lipoferum 4B was cloned and sequenced and a recA mutant (termed 4BrecA) was constructed by allelic exchange. Strain 4BrecA showed increased sensitivity to UV and MMS compared with 4B and impaired recombinase activity. The ability to generate variants in vitro was not altered; the variants from 4BrecA exhibited all morphological and biochemical features characteristic of the variant generated by strain 4B. However, the frequency of variants generated by 4BrecA was increased by up to 10-fold. So, in contrast with many studies showing the abolition or a large reduction of the frequency of phase variation in recA mutants, this study describes an enhancement of phase variation in the absence of a functional recA.  相似文献   

14.
Pseudomonas aeruginosa is a ubiquitous environmental bacterium capable of forming biofilms on surfaces as a survival strategy. It exhibits a large variety of competition/virulence factors, such as three types of motilities: flagellum-mediated swimming, flagellum-mediated swarming, and type IV pilus-mediated twitching. A strategy frequently used by bacteria to survive changing environmental conditions is to create a phenotypically heterogeneous population by a mechanism called phase variation. In this report, we describe the characterization of phenotypic variants forming small, rough colonies that spontaneously emerged when P. aeruginosa 57RP was cultivated as a biofilm or in static liquid cultures. These small-colony (S) variants produced abundant type IV fimbriae, displayed defective swimming, swarming, and twitching motilities, and were impaired in chemotaxis. They also autoaggregated in liquid cultures and rapidly initiated the formation of strongly adherent biofilms. In contrast, the large-colony variant (parent form) was poorly adherent, homogeneously dispersed in liquid cultures, and produced scant polar fimbriae. Further analysis of the S variants demonstrated differences in a variety of other phenotypic traits, including increased production of pyocyanin and pyoverdine and reduced elastase activity. Under appropriate growth conditions, cells of each phenotype switched to the other phenotype at a fairly high frequency. We conclude that these S variants resulted from phase variation and were selectively enriched when P. aeruginosa 57RP was grown as a biofilm or in static liquid cultures. We propose that phase variation ensures the prior presence of phenotypic forms well adapted to initiate the formation of a biofilm as soon as environmental conditions are favorable.  相似文献   

15.
Using a sensitive assay, we observed low levels of an unknown surfactant produced by Pseudomonas syringae pv. syringae B728a that was not detected by traditional methods yet enabled swarming motility in a strain that exhibited deficient production of syringafactin, the main characterized surfactant produced by P. syringae. Random mutagenesis of the syringafactin-deficient strain revealed an acyltransferase with homology to rhlA from Pseudomonas aeruginosa that was required for production of this unidentified surfactant, subsequently characterized by mass spectrometry as 3-(3-hydroxyalkanoyloxy) alkanoic acid (HAA). Analysis of other mutants with altered surfactant production revealed that HAA is coordinately regulated with the late-stage flagellar gene encoding flagellin; mutations in genes involved in early flagellar assembly abolish or reduce HAA production, while mutations in flagellin or flagellin glycosylation genes increase its production. When colonizing a hydrated porous surface, the bacterium increases production of both flagellin and HAA. P. syringae was defective in porous-paper colonization without functional flagella and was slightly inhibited in this movement when it lacked surfactant production. Loss of HAA production in a syringafactin-deficient strain had no effect on swimming but abolished swarming motility. In contrast, a strain that lacked HAA but retained syringafactin production exhibited broad swarming tendrils, while a syringafactin-producing strain that overproduced HAA exhibited slender swarming tendrils. On the basis of further analysis of mutants altered in HAA production, we discuss its regulation in Pseudomonas syringae.  相似文献   

16.
Pseudomonas fluorescens Q8r1-96 produces 2,4-diacetylphloroglucinol (2,4-DAPG), a polyketide antibiotic that suppresses a wide variety of soilborne fungal pathogens, including Gaeumannomyces graminis var. tritici, which causes take-all disease of wheat. Strain Q8r1-96 is representative of the D-genotype of 2,4-DAPG producers, which are exceptional because of their ability to aggressively colonize and maintain large populations on the roots of host plants, including wheat, pea, and sugar beet. In this study, three genes, an sss recombinase gene, ptsP, and orfT, which are important in the interaction of Pseudomonas spp. with various hosts, were investigated to determine their contributions to the unusual colonization properties of strain Q8r1-96. The sss recombinase and ptsP genes influence global processes, including phenotypic plasticity and organic nitrogen utilization, respectively. The orfT gene contributes to the pathogenicity of Pseudomonas aeruginosa in plants and animals and is conserved among saprophytic rhizosphere pseudomonads, but its function is unknown. Clones containing these genes were identified in a Q8r1-96 genomic library, sequenced, and used to construct gene replacement mutants of Q8r1-96. Mutants were characterized to determine their 2,4-DAPG production, motility, fluorescence, colony morphology, exoprotease and hydrogen cyanide (HCN) production, carbon and nitrogen utilization, and ability to colonize the rhizosphere of wheat grown in natural soil. The ptsP mutant was impaired in wheat root colonization, whereas mutants with mutations in the sss recombinase gene and orfT were not. However, all three mutants were less competitive than wild-type P. fluorescens Q8r1-96 in the wheat rhizosphere when they were introduced into the soil by paired inoculation with the parental strain.  相似文献   

17.
Pseudomonas syringae pv. tabaci 6605 possesses a genetic region involved in flagellin glycosylation. This region is composed of three open reading frames: orf1, orf2, and orf3. Our previous study revealed that orf1 and orf2 encode glycosyltransferases; on the other hand, orf3 has no role in posttranslational modification of flagellin. Although the function of Orf3 remained unclear, an orf3 deletion mutant (Deltaorf3 mutant) had reduced virulence on tobacco plants. Orf3 shows significant homology to a 3-oxoacyl-(acyl carrier protein) synthase III in the fatty acid elongation cycle. The Deltaorf3 mutant had a significantly reduced ability to form acyl homoserine lactones (AHLs), which are quorum-sensing molecules, suggesting that Orf3 is required for AHL synthesis. In comparison with the wild-type strain, swarming motility, biosurfactant production, and tolerance to H2O2 and antibiotics were enhanced in the Deltaorf3 mutant. A scanning electron micrograph of inoculated bacteria on the tobacco leaf surface revealed that there is little extracellular polymeric substance matrix surrounding the cells in the Deltaorf3 mutant. The phenotypes of the Deltaorf3 mutant and an AHL synthesis (DeltapsyI) mutant were similar, although the mutant-specific characteristics were more extreme in the Deltaorf3 mutant. The swarming motility of the Deltaorf3 mutant was greater than that of the DeltapsyI mutant. This was attributed to the synergistic effects of the overproduction of biosurfactants and/or alternative fatty acid metabolism in the Deltaorf3 mutant. Furthermore, the amounts of iron and biosurfactant seem to be involved in biofilm development under quorum-sensing regulation in P. syringae pv. tabaci 6605.  相似文献   

18.
Bovine factor H was found to be polymorphic by the combined techniques of SDS-polyacrylamide electrophoresis of bovine plasma and immunoblotting. Three phenotypes (S, SF, F) were identified in a sample population of 149 cattle. Variant S and F differed by an apparent molecular weight of 5000 daltons. Family studies demonstrated Mendelian segregation of variants S and F. The data indicate that these genetic variants of bovine factor H are encoded by two codominant alleles at a single autosomal locus.  相似文献   

19.
Serratia marcescens exists in two cell forms and displays two kinds of motility depending on the type of growth surface encountered (L. Alberti and R. M. Harshey, J. Bacteriol. 172:4322-4328, 1990). In liquid medium, the bacteria are short rods with few flagella and show classical swimming behavior. Upon growth on a solid surface (0.7 to 0.85% agar), they differentiate into elongated, multinucleate, copiously flagellated forms that swarm over the agar surface. The flagella of swimmer and swarmer cells are composed of the same flagellin protein. We show in this study that disruption of hag, the gene encoding flagellin, abolishes both swimming and swarming motility. We have used transposon mini-Mu lac kan to isolate mutants of S. marcescens defective in both kinds of motility. Of the 155 mutants obtained, all Fla- mutants (lacking flagella) and Mot- mutants (paralyzed flagella) were defective for both swimming and swarming, as expected. All Che- mutants (chemotaxis defective) were also defective for swarming, suggesting that an intact chemotaxis system is essential for swarming. About one-third of the mutants were specifically affected only in swarming. Of this class, a large majority showed active "swarming motility" when viewed through the microscope (analogous to the active "swimming motility" of Che- mutants) but failed to show significant movement away from the site of initial inoculation on a macroscopic scale. These results suggest that bacteria swarming on a solid surface require many genes in addition to those required for chemotaxis and flagellar function, which extend the swarming movement outward. We also show in this study that nonflagellate S. marcescens is capable of spreading rapidly on low-agar media.  相似文献   

20.
The colonization ability of Pseudomonas fluorescens F113rif in alfalfa rhizosphere and its interactions with the alfalfa microsymbiont Sinorhizobium meliloti EFB1 has been analyzed. Both strains efficiently colonize the alfalfa rhizosphere in gnotobiotic systems and soil microcosms. Colonization dynamics of F113rif on alfalfa were similar to other plant systems previously studied but it is displaced by S. meliloti EFB1, lowering its population by one order of magnitude in co-inoculation experiments. GFP tagged strains used to study the colonization patterns by both strains indicated that P. fluorescens F113rif did not colonize root hairs while S. meliloti EFB1 extensively colonized this niche. Inoculation of F113rif had a deleterious effect on plants grown in gnotobiotic systems, possibly because of the production of HCN and the high populations reached in these systems. This effect was reversed by co-inoculation. Pseudomonas fluorescens F113 derivatives with biocontrol and bioremediation abilities have been developed in recent years. The results obtained support the possibility of using this bacterium in conjunction with alfalfa for biocontrol or rhizoremediation technologies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号