首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The clinical manifestations of West Nile virus (WNV), a member of the Flavivirus family, include febrile illness, sporadic encephalitis, and paralysis. The capsid (Cp) of WNV is thought to participate in these processes by inducing apoptosis through mitochondrial dysfunction and activation of caspase-9 and caspase-3. To further identify the molecular mechanism of the WNV capsid protein (WNVCp), yeast two-hybrid assays were employed using WNV-Cp as bait. Jab1, the fifth subunit of the COP9 signalosome, was subsequently identified as a molecule that interacts with WNVCp. Immunoprecipitation and glutathione S-transferase pulldown assays confirmed that direct interaction could occur between WNVCp and Jab1. Immunofluorescence microscopy demonstrated that the overexpressed WNVCp, which localized to the nucleolus, was translocated to the cytoplasm upon its co-expression with Jab1. When treated with leptomycin B, Jab1-facilitated nuclear exclusion of WNVCp was prevented, which indicated that the CRM1 complex is required for Jab1-facilitated nuclear export of WNVCp. Moreover, Jab1 promoted the degradation of WNVCp in a proteasome-dependent way. Consistent with this, WNVCp-mediated cell cycle arrest at the G(2) phase in H1299 was prevented by exogenous Jab1. Finally, an analysis of WNVCp deletion mutants indicated that the first 15 amino acids were required for interaction with Jab1. Furthermore, the double-point mutant of the WNVCp, P5A/P8A, was incapable of binding to Jab1. These results indicate that Jab1 has a potential protective effect against pathogenic WNVCp and might provide a novel target site for the treatment of disease caused by WNV.  相似文献   

2.
West Nile virus (WNV) is a member of the Flavivirus family and induces febrile illness, sporadic encephalitis, and paralysis. The capsid (Cp) of WNV is thought to play a role in inducing these symptoms through caspase-3- and caspase-9-dependent apoptosis. Using WNVCp as bait for a yeast two-hybrid assay, we identified that Hsp70 interacted with WNVCp. The interaction between Hsp70 and WNVCp was further substantiated using purified proteins. Deletion analysis of Hsp70 indicated that WNVCp could bind to the substrate binding domain of Hsp70. The presence of WNVCp in the Hsp70-dependent folding system inhibited the refolding of beta-galactosidase (beta-gal), which showed that WNVCp might function as a negative regulator of Hsp70. Finally, the cytotoxic effect of WNVCp in 293T cells was prevented by ectopic Hsp70, suggesting a negative regulatory role of Hsp70 on WNVCp. Our findings suggest a possible negative regulatory role of Hps70 in the pathway of WNV infection.  相似文献   

3.
West Nile virus capsid protein (WNVCp) displays pathogenic toxicity via the apoptotic pathway. However, a cellular mechanism protective against this toxic effect has not been observed so far. Here, we identified Makorin ring finger protein 1 (MKRN1) as a novel E3 ubiquitin ligase for WNVCp. The cytotoxic effects of WNVCp as well as its expression levels were inhibited in U2OS cells that stably expressed MKRN1. Immunoprecipitation analyses revealed an interaction between MKRN1 and WNVCp. Domain analysis indicated that the C terminus of MKRN1 and the N terminus of WNVCp were required for the interaction. MKRN1 could induce WNVCp ubiquitination and degradation in a proteasome-dependent manner. Interestingly, the WNVCp mutant with amino acids 1 to 105 deleted WNVCp was degraded by MKRN1, whereas the mutant with amino acids 1 to 90 deleted was not. When three lysine sites at positions 101, 103, and 104 of WNVCp were replaced with alanine, MKRN1-mediated ubiquitination and degradation of the mutant were significantly inhibited, suggesting that these sites are required for the ubiquitination. Finally, U2OS cell lines stably expressing MKRN1 were resistant to cytotoxic effects of WNV. In contrast, cells depleted of MKRN1 were more susceptible to WNVCp cytotoxicity. Confirming this, overexpression of MKRN1 significantly reduced, but depletion of MKRN1 increased, WNV proliferation in 293T cells. Taken together, our results suggest that MKRN1 can protect cells from WNV by inducing WNVCp degradation.West Nile virus (WNV) is an arthropod-borne virus that is a member of the Flaviviridae family, which includes St. Louis encephalitis virus, Kunjin virus, yellow fever virus, dengue virus, and Murray Valley encephalitis virus (2). Since its first identification in the West Nile province of Uganda in 1937, WNV has spread quickly through Asia, Europe, and the United States and has caused a serious global health problem (34). The clinical manifestations of WNV usually entail neurological diseases such as meningitis and encephalitis. This might be caused by WNV genome replication after inoculation and its subsequent spread to lymph nodes and blood, followed by its entrance into the central nervous system through Toll-like receptor and tumor necrosis factor receptor (40).WNV has the genome of a single positive-sense RNA containing one open reading frame. The encoded polypeptide is processed further by viral and cellular proteases into several nonstructural and structural proteins (2). Nonstructural (NS) proteins include NS1, NS2A, NS2B, NS3, NS4A, NS4B, and NS5. NS1 is involved in synthesis of viral RNA, and NS3 mediates the cleavage of nonstructural proteins (22, 25, 30, 48). NS5 functions as an RNA polymerase and methyltransferase, which are required for viral replication (14, 17, 18). NS2A, NS2B, NS4A, and NS4B promote the organization of viral replication factors and membrane permeabilization (3, 5, 6, 13, 37). The capsid, envelope (E), and premembrane (prM) proteins are the structural proteins, which are involved in virus assembly (43). E protein is a virion surface protein that regulates binding and fusion to the cell membrane (1, 11, 32). The prM protein is a precursor of the M protein, which is translocated to the endoplasmic reticulum (ER) by capsid (2, 21). Viral assembly occurs mainly in the ER membrane following release of viral particles (23).The capsid of WNV (WNVCp) localizes and is involved in nucleocapsid assembly on the ER membrane (15). However, extra roles of the flavivirus capsid in the nucleus has been reported. For example, capsid proteins of Japanese encephalitis virus (JEV) and hepatitis C virus (HCV), which are also members of the Flaviviridae family, participate in pathogenesis by localizing to the nucleus (33). Nucleolar and nuclear WNVCp is involved in pathogenesis via induction of the apoptotic process in cells through interaction with Hdm2, which results in the activation of the potent tumor suppressor p53 (47). It also induces apoptotic death of neuron cells via mitochondrial dysfunction and activation of caspase pathways when introduced into the brains of mice (46).The Makorin ring finger protein 1 (MKRN1) gene was first reported as the source gene of introns for the intronless imprinted MKRN gene family (10). The protein is an ancient protein conserved from invertebrates to vertebrates, and it contains several zinc finger motifs, including C3H, C3HC4, and unique Cys-His motifs (10). Furthermore, this gene is constitutively expressed in most human tissues, including neurons (10). The role of MKRN1 as an E3 ligase was first identified by its ability to degrade hTERT (16). Interestingly, MKRN1 functions as a coregulator of androgen and retinoic acid receptor (27), suggesting possible diverse roles of MKRN1 in human cells.In this study, we report on an ubiquitin (Ub) E3-ligase for WNVCp. MKRN1 was able to ubiquitinate and degrade WNVCp in a proteasome-dependent manner. Furthermore, degradation of WNVCp resulted in a reduction of WNV-induced cell death. Cells stably overexpressing MKRN1 were resistant to WNV-induced cell death. In contrast, ablation of MKRN1 by small interfering RNA (siRNA) renders cells more susceptible to the cytotoxicity of WNVCp. Furthermore, WNV proliferation was suppressed in 293T cells overexpressing MKRN1 but increased in MKRN1-depleted 293T cells. Based on these data, we suggest that MKRN1 might play a role in protection of cells against WNV infection.  相似文献   

4.
5.
The biological mechanisms for maintaining the basal level of p53 in normal cells require nuclear exclusion and cytoplasmic degradation. Here, we showed that Jab1 facilitates p53 nuclear exclusion and its subsequent degradation in coordination with Hdm2. p53 was excluded from the nucleus in the presence of Jab1; this exclusion was prevented by leptomycin B treatment. Nuclear export of p53 was accompanied by a decrease in the levels of p53, as well as of its target proteins, which include p21 and Bax. Domain analyses of Jab1 showed that the N-terminal domain, 1-110, was capable of inducing cytoplasmic translocation of p53. Furthermore, 110-191 was required to facilitate the degradation of p53. Neither of these mutants incorporated into the CSN complex, indicating that Jab1 could affect the levels of p53 independent of intact CSN complex. Conversely, Jab1 was incapable of translocating and degrading two p53 mutants, W23S and 6KR, neither of which could be modified by Hdm2. Moreover, Jab1 did not affect the cellular localization or protein levels of p53 in p53 and Hdm2 double-null mouse embryo fibroblasts. We further observed that the ablation of endogenous Jab1 by small interfering RNA prevented Hdm2-mediated p53 nuclear exclusion. Under stressed conditions, which could sequester Hdm2 in its inactive state, Jab1 did not affect p53. Our studies implicate that Jab1 is required to remove post-translationally modified p53 and provide a novel target for p53-related cancer therapies.  相似文献   

6.
The Hdmx protein restricts p53 activity in vivo and is overexpressed in a significant fraction of human tumors that retain the wild type p53 allele. An understanding of how Hdmx limits p53 activation and blocks apoptosis could therefore lead to development of novel therapeutic agents. We previously showed that Hdmx modulates tumor cell sensitivity to Nutlin-3a, a potent antagonist of the p53/Hdm2 interaction. In this report, we demonstrate that this also applies to MI-219, another Hdm2 antagonist. Thus, the inability to disrupt Hdmx/p53 complexes is a potential barrier to the efficacy of these compounds as single agents. We show that sensitivity to apoptosis in cells with high Hdmx levels is restored by combined treatment with Hdm2 and a Bcl-2 family member antagonist to activate Bax. The data are consistent with a model in which Hdmx attenuates p53-dependent activation of the intrinsic apoptotic pathway, and that this occurs upstream of Bax activation. Thus, selectively inhibiting Hdm2 and activating Bax is one effective strategy to induce apoptosis in tumors with high Hdmx levels. Our findings also indicate that preferential induction of apoptosis in tumor versus normal cells occurs using appropriate drug doses.  相似文献   

7.
Human VRK1 induces a stabilization and accumulation of p53 by specific phosphorylation in Thr18. This p53 accumulation is reversed by its downregulation mediated by Hdm2, requiring a dephosphorylated p53 and therefore also needs the removal of VRK1 as stabilizer. This process requires export of VRK1 to the cytosol and is inhibited by leptomycin B. We have identified that downregulation of VRK1 protein levels requires DRAM expression, a p53-induced gene. DRAM is located in the endosomal-lysosomal compartment. Induction of DNA damage by UV, IR, etoposide and doxorubicin stabilizes p53 and induces DRAM expression, followed by VRK1 downregulation and a reduction in p53 Thr18 phosphorylation. DRAM expression is induced by wild-type p53, but not by common human p53 mutants, R175H, R248W and R273H. Overexpression of DRAM induces VRK1 downregulation and the opposite effect was observed by its knockdown. LC3 and p62 were also downregulated, like VRK1, in response to UV-induced DNA damage. The implication of the autophagic pathway was confirmed by its requirement for Beclin1. We propose a model with a double regulatory loop in response to DNA damage, the accumulated p53 is removed by induction of Hdm2 and degradation in the proteasome, and the p53-stabilizer VRK1 is eliminated by the induction of DRAM that leads to its lysosomal degradation in the autophagic pathway, and thus permitting p53 degradation by Hdm2. This VRK1 downregulation is necessary to modulate the block in cell cycle progression induced by p53 as part of its DNA damage response.  相似文献   

8.
Prostaglandin D(2) (PGD(2)), a major cyclooxygenase product in a variety of tissues and cells, readily undergoes dehydration to yield electrophilic PGs, such as 15-deoxy-Delta(12,14)-PGJ(2) (15d-PGJ(2)). We have previously shown that 15d-PGJ(2) potently induces apoptosis of SH-SY5Y human neuroblastoma cells via accumulation of the tumor suppressor gene product p53. In the study presented here, we investigated the molecular mechanisms involved in the 15d-PGJ(2)-induced accumulation of p53. It was observed that 15d-PGJ(2) potently induced p53 protein expression but scarcely induced p53 gene expression. In addition, exposure of the cells to 15d-PGJ(2) resulted in an accumulation of ubiquitinated proteins and in a significant inhibition of proteasome activities, suggesting that 15d-PGJ(2) acted on the ubiquitin-proteasome pathway, a regulatory mechanism of p53 turnover. The effects of 15d-PGJ(2) on the protein turnover were attributed to its electrophilic feature, based on the observations that (i) the reduction of the double bond in the cyclopentenone ring of 15d-PGJ(2) virtually abolished the effects on protein turnover, (ii) overexpression of an endogenous redox regulator, thioredoxin 1, significantly retarded the inhibition of proteasome activities and accumulations of p53 and ubiquitinated proteins induced by 15d-PGJ(2), and (iii) treatment of SH-SY5Y cells with biotinylated 15d-PGJ(2) indeed resulted in the formation of a 15d-PGJ(2)-proteasome conjugate. These data suggest that the modulation of proteasome activity may be involved in the mechanism responsible for the accumulation of p53 and subsequent induction of apoptotic cell death induced by 15d-PGJ(2).  相似文献   

9.
Many cell lines derived from neuroblastoma (NB) carry the wild-type p53 gene with a p53-dependent apoptotic pathway that is responsive to DNA damaging agents. A recent study has demonstrated that retinoic acid (RA) pretreatment of NB cells promotes chemoresistance to apoptosis induced by chemotherapeutic agents. We examine here the possible contribution of the p53 pathway to the chemoresistance response associated with the RA treatment in NB cells. Upon treatment with RA (1-10 microM) for 4 days, the human NB cells, SH-SY5Y, developed resistance selectively to p53-dependent apoptotic stimuli including gamma-irradiation, etoposide, and 1-(5-isoquinolinyl sulfonyl)-2-methylpiperazine (H-7). Interestingly, RA affected the ability of H-7 to induce nuclear accumulation of the p53 protein without altering its effect on elevating the steady-state level of p53, suggesting that drug-induced up-regulation and nuclear accumulation of the wild-type p53 protein are separable processes. The modulation of nuclear import of p53 protein by RA may thus represent a potential mechanism by which certain tumor cells with the wild-type p53 gene develop resistance to chemotherapeutic agents.  相似文献   

10.
Tissue transglutaminase (TG2) is a multifunctional member of the transglutaminase (TGase) family (E.C.2.3.2.13), which catalyzes in a calcium-dependent reaction the formation of covalent bonds between the γ-carboxamide groups of peptide-bound glutamine residues and various primary amines. Here, we investigated the role of TG2 in a response of the neuroblastoma SH-SY5Y cells to topoisomerase II inhibitor etoposide, known to trigger DNA-damage cell response. We found an early and transient (~2 h) increase of the TG2 protein in SH-SY5Y cells treated with etoposide, along with the increase of phosphorylated and total levels of the p53 protein. Next, we showed that SH-SY5Y cells, which overexpress wild-type TG2 were significantly protected against etoposide-induced cell death. The TG2 protective effect was associated only with the transamidation active form of TG2, because overexpression the wild-type TG2, but not its transamidation inactive C277S form, resulted in a pronounced suppression of caspase-3 activity as well as p53 phosphorylation during the etoposide-induced stress. In addition, exacerbation of cell death with a significant increase in caspase-3 and p53 activation was observed in SH/anti-TG2 cells, in which expression of the endogenous TG2 protein has been greatly reduced by the antisense cDNA construct. Though the cell signaling and molecular mechanisms of the TG2-driven suppression of the cell death machinery remain to be investigated, our findings strongly suggest that TG2 plays an active role in the response of neuroblastoma cells to DNA-damage-induced stress by exerting a strong protective effect, likely by the suppression of p53 activation and p53-driven cell signaling events.  相似文献   

11.
Cellular senescence is an irreversible state of terminal growth arrest that requires functional p53. Acting to block tumor formation, induction of senescence has also been demonstrated to contribute to tumor clearance via the immune system following p53 reactivation.1, 2 The Hdm2-antagonist, Nutlin-3a, has been shown to reactivate p53 and induce a quiescent state in various cancer cell lines,3, 4 similar to the G1 arrest observed upon RNAi targeting of Hdm2 in MCF7 breast cancer.5 In the present study we show that HdmX, a negative regulator of p53, impacts the senescence pathway. Specifically, overexpression of HdmX blocks Ras mediated senescence in primary human fibroblasts. The interaction of HdmX with p53 and the re-localization of HdmX to the nucleus through Hdm2 association appear to be required for this activity. Furthermore, inhibiting HdmX in prostate adenocarcinoma cells expressing wild-type p53, mutant Ras and high levels of HdmX induced cellular senescence as measured by an increase in irreversible b-galactosidase staining. Together these results suggest that HdmX overexpression may contribute to tumor formation by blocking senescence and that targeting HdmX may represent an attractive anti-cancer therapeutic approach.  相似文献   

12.
Mutations in the gene encoding cytosolic Cu,Zn-superoxide dismutase (SOD1) have been linked to familial amyotrophic lateral sclerosis (FALS). However the molecular mechanisms of motor neuron death are multi-factorial and remain unclear. Here we examined DNA damage, p53 activity and apoptosis in SH-SY5Y human neuroblastoma cells transfected to achieve low-level expression of either wild-type or mutant Gly93  Ala (G93A) SOD1, typical of FALS. DNA damage was investigated by evaluating the levels of 8-oxo-7,8-dihydro-2′-deoxyguanosine (8-oxodGuo) and DNA strand breaks. Significantly higher levels of DNA damage, increased p53 activity, and a greater percentage of apoptotic cells were observed in SH-SY5Y cells transfected with G93A SOD1 when compared to cells overexpressing wild-type SOD1 and untransfected cells. Western blot, FACS, and confocal microscopy analysis demonstrated that G93A SOD1 is present in the nucleus in association with DNA. Nuclear G93A SOD1 has identical superoxide dismutase activity but displays increased peroxidase activity when compared to wild-type SOD1. These results indicate that the G93A mutant SOD1 association with DNA might induce DNA damage and trigger the apoptotic response by activating p53. This toxic activity of mutant SOD1 in the nucleus may play an important role in the complex mechanisms associated with motor neuron death observed in ALS pathogenesis.  相似文献   

13.
Doxorubicin (0.5 microgram/ml) induced caspase-dependent apoptosis in SH-SY5Y neuroblastoma and CHP-100 neuroepithelioma cells. The apoptotic response started to be evident approximately 15 h after drug administration and, as monitored over a 48-h period, was more pronounced in CHP-100 than in SH-SY5Y cells. In both systems, apoptosis was accompanied by elevation of intracellular ceramide levels. Ceramide accumulation was blocked by the ceramide synthase inhibitor fumonisin B(1) (25 microM); this compound, however, did not prevent drug-induced apoptosis. Untreated cells from both lines expressed negligible p53 levels; on the other hand, whereas p53 and p21(Cip1/Waf1) were rapidly up-regulated in doxorubicin-treated SH-SY5Y cells, such a response was not observed in CHP-100 cells. Doxorubicin induced a G(2)/M phase block in both cell lines, but whereas the G(1) phase was markedly depleted in CHP-100 cells, it was substantially retained in SH-SY5Y cells. In the latter system, double G(1) and G(2)/M block largely preceded cell death; however, as apoptosis underwent completion, it selectively targeted late S and G(2)/M cells. Moreover, apoptosis suppression by caspase inhibition did not result in a recovery of the G(1) cell population. These results support the notion that doxorubicin-induced apoptosis and ceramide elevation are divorced events in neuroectodermal tumors and that p53 function is at least dispensable for apoptosis completion. Indeed, as G(1) cells appear to be refractory to doxorubicin-induced apoptosis, p53 up-regulation and p21(Cip1/Waf1) expression may provide an unfavorable setting for the apoptotic action of the drug.  相似文献   

14.
15.
16.
The importance of coordinating cell growth with proliferation has been recognized for a long time. The molecular basis of this relationship, however, is poorly understood. Here we show that the ribosomal protein L23 interacts with HDM2. The interaction involves the central acidic domain of HDM2 and an N-terminal domain of L23. L23 and L11, another HDM2-interacting ribosomal protein, can simultaneously yet distinctly interact with HDM2 together to form a ternary complex. We show that, when overexpressed, L23 inhibits HDM2-induced p53 polyubiquitination and degradation and causes a p53-dependent cell cycle arrest. On the other hand, knocking down L23 causes nucleolar stress and triggers translocation of B23 from the nucleolus to the nucleoplasm, leading to stabilization and activation of p53. Our data suggest that cells may maintain a steady-state level of L23 during normal growth; alternating the levels of L23 in response to changing growth conditions could impinge on the HDM2-p53 pathway by interrupting the integrity of the nucleolus.  相似文献   

17.
The mechanism of p53-dependent apoptosis is still only partly defined. Using early-passage embryonic fibroblasts (MEF) from wild-type (wt), p53(-/-) and bax(-/-) mice, we observe a p53-dependent translocation of Bax to the mitochondria and a release of mitochondrial Cytochrome c during stress-induced apoptosis. These events proceed independent of zVAD-inhibitable caspase activation, are not prevented by dominant negative FADD (DN-FADD), but are negatively regulated by Mdm-2. Bcl-x(L) expression prevents the release of mitochondrial Cytochrome c and apoptosis, but not Bax translocation. At a single-cell level, enforced expression of p53 is sufficient to induce Bax translocation and Cytochrome c release. Real-time RT-PCR analysis reveals a significant induction of RNA expression of Noxa and Bax in p53(+/+), but not in p53(-/-) MEF. Noxa protein expression becomes detectable prior to Bax translocation, and downregulation of endogenous Noxa by RNA interference protects wt MEF against p53-dependent apoptosis. Hence, in oncogene-expressing MEF p53 induces apoptosis by BH3 protein-dependent caspase activation.  相似文献   

18.
MicroRNAs (miRNAs) are generated by endonuclease activity of Dicer, which also helps in loading of miRNAs to their target sequences. SH-SY5Y, a human neuroblastoma and a cellular model of neurodevelopment, consistently expresses genes related to neurodegenerative disorders at different biological levels (DNA, RNA, and proteins). Using SH-SY5Y cells, we have studied the role of Dicer and miRNAs in neuronal differentiation and explored involvement of P53, a master regulator of gene expression in differentiation-induced induction of miRNAs. Knocking down Dicer gene induced senescence in differentiating SH-SY5Y cells, which indicate the essential role of Dicer in brain development. Differentiation of SH-SY5Y cells by retinoic acid (RA) or RA + brain-derived neurotrophic factor (BDNF) induced dramatic changes in global miRNA expression. Fully differentiated SH-SY5Y cells (5-day RA followed by 3-day BDNF) significantly (p < 0.05 and atleast >3-fold change) upregulated and downregulated the expression of 77 and 17 miRNAs, respectively. Maximum increase was observed in the expression of miR-193-5p, miR-199a-5p, miR-192, miR-145, miR-28-5p, miR-29b, and miR-222 after RA exposure and miR-193-5p, miR-146a, miR-21, miR-199a-5p, miR-153, miR-29b, and miR-222 after RA + BDNF exposure in SH-SY5Y cells. Exploring the role of P53 in differentiating SH-SY5Y cells, we have observed that induction of miR-222, miR-192, and miR-145 is P53 dependent and expression of miR-193a-5p, miR-199a-5p, miR-146a, miR-21, miR-153, and miR-29b is P53 independent. In conclusion, decreased Dicer level enforces differentiating cells to senescence, and differentiating SH-SY5Y cells needs increased expression of P53 to cope up with changes in protein levels of mature neurons.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号