首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Summary Nuclear bag and nuclear chain intrafusal fibres are present in guinea-pig muscle spindles. Unlike muscle spindles in other species two types of nuclear chain fibre seem to be present. The electron microscopical appearance of one type of nuclear chain fibre is similar to that of nuclear bag fibres.It is suggested that under tension the nuclei of small nuclear bag fibres become sufficiently displaced to form nuclear chain-like fibres. The frequent occurrence of fibres which combine some of the properties of both nuclear bag and nuclear chain fibres indicates the possible occurrence of a third type of intrafusal fibre.The sensory innervation of guinea-pig muscle spindles is similar to that of the cat and the rat. Three types of motor nerve ending which could be classified according to the complexity of their subneural apparatus were seen.  相似文献   

3.
4.
The mammalian Golgi ribbon disassembles during mitosis and reforms in both daughter cells after division. Mitotic Golgi membranes concentrate around the spindle poles, suggesting that the spindle may control Golgi partitioning. To test this, cells were induced to divide asymmetrically with the entire spindle segregated into only one daughter cell. A ribbon reforms in the nucleated karyoplasts, whereas the Golgi stacks in the cytoplasts are scattered. However, the scattered Golgi stacks are polarized and transport cargo. Microinjection of Golgi extract together with tubulin or incorporation of spindle materials rescues Golgi ribbon formation. Therefore, the factors required for postmitotic Golgi ribbon assembly are transferred by the spindle, but the constituents of functional stacks are partitioned independently, suggesting that Golgi inheritance is regulated by two distinct mechanisms.  相似文献   

5.
The recessive ataxia-telangiectasia (A-T) syndrome is characterized by cerebellar degeneration, immunodeficiency, cancer susceptibility, premature aging, and insulin-resistant diabetes and is caused by loss of function of the ATM kinase, a member of the phosphoinositide 3-kinase–like protein kinases (PIKKs) family. ATM plays a crucial role in the DNA damage response (DDR); however, the complexity of A-T features suggests that ATM may regulate other cellular functions. Here we show that ATM affects proper bipolar mitotic spindle structure independently of DNA damage. In addition, we find that in mitosis ATM forms a complex with the poly(ADP)ribose (PAR) polymerase Tankyrase (TNKS) 1, the spindle pole protein NuMA1, and breast cancer susceptibility protein BRCA1, another crucial DDR player. Our evidence indicates that the complex is required for efficient poly(ADP)ribosylation of NuMA1. We find further that a mutant NuMA1 version, non-phosphorylatable at potential ATM-dependent phosphorylation sites, is poorly PARylated and induces loss of spindle bipolarity. Our findings may help to explain crucial A-T features and provide further mechanistic rationale for TNKS inhibition in cancer therapy.  相似文献   

6.
7.
Walsh CJ 《PloS one》2012,7(4):e34763
Mitosis in the amebo-flagellate Naegleria pringsheimi is acentrosomal and closed (the nuclear membrane does not break down). The large central nucleolus, which occupies about 20% of the nuclear volume, persists throughout the cell cycle. At mitosis, the nucleolus divides and moves to the poles in association with the chromosomes. The structure of the mitotic spindle and its relationship to the nucleolus are unknown. To identify the origin and structure of the mitotic spindle, its relationship to the nucleolus and to further understand the influence of persistent nucleoli on cellular division in acentriolar organisms like Naegleria, three-dimensional reconstructions of the mitotic spindle and nucleolus were carried out using confocal microscopy. Monoclonal antibodies against three different nucleolar regions and α-tubulin were used to image the nucleolus and mitotic spindle. Microtubules were restricted to the nucleolus beginning with the earliest prophase spindle microtubules. Early spindle microtubules were seen as short rods on the surface of the nucleolus. Elongation of the spindle microtubules resulted in a rough cage of microtubules surrounding the nucleolus. At metaphase, the mitotic spindle formed a broad band completely embedded within the nucleolus. The nucleolus separated into two discreet masses connected by a dense band of microtubules as the spindle elongated. At telophase, the distal ends of the mitotic spindle were still completely embedded within the daughter nucleoli. Pixel by pixel comparison of tubulin and nucleolar protein fluorescence showed 70% or more of tubulin co-localized with nucleolar proteins by early prophase. These observations suggest a model in which specific nucleolar binding sites for microtubules allow mitotic spindle formation and attachment. The fact that a significant mass of nucleolar material precedes the chromosomes as the mitotic spindle elongates suggests that spindle elongation drives nucleolar division.  相似文献   

8.
9.
10.
Central mitotic spindles in Diatoma vulgare have been investigated using serial sections and electron microscopy. Spindles at both early stages (before metaphase) and later stages of mitosis (metaphase to telophase) have been analyzed. We have used computer graphics technology to facilitate the analysis and to produce stereo images of the central spindle reconstructed in three dimensions. We find that at prometaphase, when the nuclear envelope is dissassembling, the spindle is constructed from two sets of polar microtubules (MTs) that interdigitate to form a zone of overlap. As the chromosomes become organized into the metaphase configuration, the polar MTs, the spindle, and the zone of overlap all elongate, while the number of MTs in the central spindle decreases from greater than 700 to approximately 250. Most of the tubules lost are short ones that reside near the spindle poles. The previously described decrease in the length of the zone of overlap during anaphase central spindle elongation is clearly demonstrated in stereo images. In addition, we have used our three- dimensional data to determine the lengths of the spindle MTs at various times during mitotis. The distribution of lengths is bimodal during prometaphase, but the short tubules disappear and the long tubules elongate as mitosis proceeds. The distributions of MT lengths are compared to the length distributions of MTs polymerized in vitro, and a model is presented to account for our findings about both MT length changes and microtubule movements.  相似文献   

11.
12.
Trypanosoma cruzi epimastigotes show gamma-glutamyltranspeptidase activity which has characteristics significantly different than the mammalian enzyme. The protozoan enzyme is localized in the cytosolic fraction, it has a Km of 1.6 mM and a Vmax of 17.4 nmol/min/mg protein with L-gamma-glutamyl-p-nitroanilide as gamma-glutamyl donor, and an optimun pH range from 7.5 to 8.0. The best amino acid acceptors were L-histidine, L-asparagine, L-aspartate, L-glutamate and L-proline, but L-glutamine was a very poor acceptor. The enzyme was very sensitive to inhibition by 6-diazo-5-oxo-L-norleucine (k2 = 4.0 X 10(5)/M per min) and O-diazo-acetyl-L-serine (k2 = 1.1 X 10(4)/M per min). Phenobarbital (k2 = 8.38/M per min) and L-serine borate (Ki = 34 mM) were poor inhibitors. The activity of the enzyme was not correlated with the logarithmic phase of growth of the parasites and steadily decreases with the age of the cultures.  相似文献   

13.
14.
The regulation of mitotic spindle function   总被引:5,自引:0,他引:5  
The process of mitosis includes a series of morphological changes in the cell in which the directional movements of chromosomes are the most prominent. The presence of a microtubular array, known as the spindle or mitotic apparatus, provides at least a scaffold upon which these movements take place. The precise mechanism for chromosome movement remains obscure, but new findings suggest that the kinetochore may play a key role in chromosome movement toward the spindle pole, and that sliding interactions between or among adjacent microtubules may provide the mechanochemical basis for spindle elongation. The physiological regulation of the anaphase motors and of spindle operation either before or after anaphase remains equally elusive. Elicitors that may serve as controlling elements in spindle function include shifts in cytosolic calcium activity and perhaps the activation or inactivation of protein kinases, which in turn produce changes in the state of phosphorylation of specific spindle components.  相似文献   

15.
16.
Genetic variation in Trypanosoma cruzi is likely a key determinant in transmission and pathogenesis of Chagas disease. We have examined nine loci as markers for the extant T. cruzi strains. Four distinct alleles were found for each locus, corresponding to the sequence classes present in the homozygous discrete typing units (DTUs) I, IIa, IIb, and IIc. The alleles in DTUs IIa and IIc showed a spectrum of polymorphism ranging from DTU I-like to DTU IIb-like, in addition to DTU-specific sequence variation. DTUs IId and IIe were indistinguishable, showing DTU homozygosity at one locus and heterozygosity with DTU IIb and IIc allelic sequences at eight loci. Recombination between the DTU IIb and IIc alleles is evidenced from mosaic polymorphisms. These data imply that two discrete hybridization events resulted in the formation of the current DTUs. We propose a model in which a fusion between ancestral DTU I and IIb strains gave rise to a heterozygous hybrid that homogenized its genome to become the homozygous progenitor of DTUs IIa and IIc. The second hybridization between DTU IIb and IIc strains that generated DTUs IId and IIe resulted in extensive heterozygosity with subsequent recombination of parental genotypes.  相似文献   

17.
An initiative was launched in 1994 by the Special Programme for Research and Training in Tropical Diseases (TDR) of the WHO to analyse the genomes of the parasites Filaria, Schistosoma, Leishmania, Trypanosoma brucei and Trypanosoma cruzi. Five networks were established through wide publicity, holding meetings of key laboratories and developing proposals which were then reviewed by the Steering Committee of Strategic Research for financial support. The aim of the Programme was to use the platform of these networks to: (1) train scientists from tropical disease-endemic countries; (2) transfer technology and share material and expertise, thereby reducing costs and increasing efficiency; and (3) provide an information system that is accessible globally as soon as the results become available. The initial target was to produce a low-resolution genome map for each of the parasites, but it soon became evident that by using rapidly developing technologies, it might be feasible to complete DNA-sequence analysis for some of the parasites in the next decade, as discussed here by Alberto Carlos Frasch and colleagues, with particular focus on the T. cruzi genome initiative.  相似文献   

18.
TbNOP86 and TbNOP66 are two novel nucleolar proteins isolated in Trypanosoma brucei. They share 92.6% identity, except for an additional C-terminal domain of TbNOP86 of 182 amino acids in length. Both proteins are found in Trypanosomatidae, but similarity to other eukaryotic proteins could not be found. TbNOP86 and TbNOP66 are expressed at similar level in procyclic and bloodstream forms, although the relative level of expression of TbNOP66 is 11 times lower. TbNOP86 undergoes post-translational modifications, as it is found predominantly at 110 kDa compared with the predicted 86 kDa. Immunofluorescence of overexpressed ty-tagged TbNOP86 and TbNOP66 showed that both proteins accumulated in the nucleolus of G(1) cells. This was confirmed by the co-localization of an endogenous TbNOP86-myc with the nucleolar protein Nopp140. TbNOP86-ty localization is cell cycle-regulated, because it colocalizes with the mitotic spindle in mitotic cells. TbNOP86 is required for mitotic progression in both life stages as depleted cells are enriched in the G(2)/M phase. In procyclic cells, a reduced growth rate is accompanied by an accumulation of zoids (0N1K), 2N1K, and multinucleated cells (xNyK). The 2N1K cells are blocked in late mitosis as nucleolar segregation is completed. TbNOP86 depletion in bloodstream form caused a drastic growth inhibition producing cells bearing two kinetoplasts and an enlarged nucleus (1N(*)2K), followed by an accumulation of 2N2K cells with connected nuclei and xNyK cells. These studies of TbNOP86 provide a more comprehensive account of proteins involved in mitotic events in trypanosomes and should lead to the identification of partners with similar function.  相似文献   

19.
Gamma aminobutyric acid (GABA) is widely known as a neurotransmitter and signal transduction molecule found in vertebrates, plants, and some protozoan organisms. However, the presence of GABA and its role in trypanosomatids is unknown. Here, we report the presence of intracellular GABA and the biochemical characterization of its uptake in Trypanosoma cruzi, the etiological agent of Chagas' disease. Kinetic parameters indicated that GABA is taken up by a single transport system in pathogenic and nonpathogenic forms. Temperature dependence assays showed a profile similar to glutamate transport, but the effect of extracellular cations Na+, K+, and H+ on GABA uptake differed, suggesting a different uptake mechanism. In contrast to reports for other amino acid transporters in T. cruzi, GABA uptake was Na+ dependent and increased with pH, with a maximum activity at pH 8.5. The sensitivity to oligomycin showed that GABA uptake is dependent on ATP synthesis. These data point to a secondary active Na+/GABA symporter energized by Na+‐exporting ATPase. Finally, we show that GABA occurs in the parasite's cytoplasm under normal culture conditions, indicating that it is regularly taken up from the culture medium or synthesized through an still undescribed metabolic pathway.  相似文献   

20.
Trypanosoma cruzi multiplies and differentiates in the digestive tract of triatomine insects. These insects ingest an enormous amount of blood, with ingestion followed very rapidly by a strong diuresis, slow digestion and occasionally long periods of starvation. Resulting changes in the intestinal environment induce the development of dominant stages of T. cruzi--epimastigotes and metacyclic trypomastigotes--and can be correlated with the appearance of specific developmental stages--spheromastigotes and giant cells--which otherwise are only rarely seen. Here, Astrid Kollien and Günter Schaub outline recent research on these developmental steps of T. cruzi in the vector, and the effects of different compounds acting against the parasite in the vector.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号