首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have studied the distribution of potentially active genes on human chromosomes, using two methods: DNAse I hypersensitivity and restriction enzyme--nick translation with enzymes sensitive to methylation of CpG doublets. DNAse hypersensitivity is known to be associated with potentially active genes, and, when the reaction is detected by "in situ" nick translation, produces an R-banding pattern. Digestion of chromosomes with HpaII or CfoI, both of which should preferentially cut unmethylated sequences in the CpG islands associated with the majority of genes, also produces R-banding patterns. Deviations are attributable to overdigestion of the chromosomes, leading to extraction of DNA and loss of the specific sites that were to be detected. Contrary to the results of a number of previous workers, we have failed to demonstrate any differences between the DNAse I hypersensitivity or the degree of methylation of the active and inactive X chromosomes in metaphases from females.  相似文献   

2.
We have studied the distribution and methylation of CpG islands on human chromosomes, using the novel technique of self-primed in situ labeling (SPRINS). The SPRINS technique is a hybrid of the two techniques primed in situ labeling (PRINS) and nick translation in situ. SPRINS detects chromosomal DNA breaks, as in nick translation in situ, and not annealed primers, as is the case in PRINS. We analyzed in situ-generated DNA breaks induced by the restriction enzymes HpaII and MspI. These restriction enzymes enable the detection of chromosomal CpG islands. Both HpaII- and MspI-SPRINS produce a banding pattern resembling R-banding, indicating a higher level of CpG islands in R-positive bands than in R-negative bands. Our SPRINS banding observations also indicate differences in sequence copy number in the satellites of homologous acrocentric chromosomes. Furthermore, a comparison of homologous HpaII-SPRINS-banded X chromosomes of females from lymphocyte cultures grown without methotrexate or bromodeoxyuridine revealed methylation difference between them. The same comparison of homologous X chromosomes from the cell line GM01202D, which has four X chromosomes, one active and three inactive, revealed the active X chromosome to be hypermethylated. Received: 5 February 1998; in revised form: 8 May 1998 / Accepted: 11 May 1998  相似文献   

3.
We have analyzed the patterns of DNase I/nick translation in the chromosomes of Rana perezi. The results show a nonuniform DNase sensitivity in different chromosome domains; the hypersensitivity appears to be concentrated at both the NOR and the distal regions. The resemblance to the situation in mammals, where active genes are DNase I hypersensitive, is discussed.  相似文献   

4.
Lorite P  García MF  Palomeque T 《Genetica》1999,106(3):247-250
We have analysed the patterns of DNase I/nick translation in the chromosomes of Tapinoma nigerrimum. The results show a non-uniform DNase I sensitivity in different chromosome domains. The hypersensitivity appears to be specially concentrated at both the NOR and the distal regions. The resemblance to and differences from the situation in other animal species, in which active genes are DNase I hypersensitive, are discussed. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

5.
DNase I sensitivity in facultative and constitutive heterochromatin   总被引:2,自引:0,他引:2  
In situ nick translation allows the detection of DNase I sensitive and insensitive regions in fixed mammalian mitotic chromosomes. We have determined the difference in DNase I sensitivity between the active and inactive X chromosomes inMicrotus agrestis (rodent) cells, along both their euchromatic and constitutive heterochromatic regions. In addition, we analysed the DNase I sensitivity of the constitutive heterochromatic regions in mouse chromosomes. InMicrotus agrestis female cells the active X chromosome is sensitive to DNase I along its euchromatic region while the inactive X chromosome is insensitive except for an early replicating region at its distal end. The late replicating constitutive heterochromatic regions, however, in both the active and inactive X chromosome are sensitive to DNase I. In mouse cells on the other hand, the constitutive heterochromatin is insensitive to DNase I both in mitotic chromosomes and interphase nuclei.  相似文献   

6.
Vezuli A  Rumpler Y 《Chromosoma》2000,109(3):214-218
A method for simultaneously obtaining R-banding and chromosome painting is described. It combines fluorescence in situ hybridization with replication of R-bands by 5-bromo-2′-deoxyuridine incorporation into synchronized cells. Distinctive R-banding induced by a modified fluorochrome-photolysis procedure can be observed on both painted and non-painted chromosomes. This method applied to Lemur chromosomes was developed for further studies of chromosomal changes in the evolution of prosimian primates and could also be used in other cytogenetic applications where simultaneous identification of chromosomal R-bands and hybridization signal is needed. Received: 14 September 1999; in revised form: 18 October 1999 / Accepted: 20 October 1999  相似文献   

7.
The overall nuclease sensitivity and methylation of active and inactive X chromosomes of kangaroos were examined by in situ nick translation. Cultured fibroblasts of subspecies wallaroo-euro (Macropus robustus robustus; Macropus robustus erubescens) hybrids were used, enabling the paternally and maternally derived X chromosomes to be distinguished. No difference was found between the active and inactive X chromosomes with DNase I or MspI digestion. When chromosomes were digested with the methylation sensitive restriction enzymes HpaII and HhaI, the inactive X chromosome was labelled to a greater extent. These results indicate no overall difference in chromatin condensation between the active and inactive X chromosomes and greater overall methylation of the active X chromosome. This relative undermethylation of the inactive X chromosome may be important in X chromosome inactivation, but its function, if any, remains to be determined.by A. Bird  相似文献   

8.
Sabine Adolph 《Chromosoma》1988,96(2):102-106
In situ nick translation of mouse metaphase chromosomes by non-radioactive detection means and DNase I digestion followed by Giemsa staining were used to analyse the DNase I resistance of two different C-band positive regions. These were the centromeric heterochromatin of aero- and metacentric chromosomes and an interstitial C- band on chromosome 1 of wild mice, IS(HSR;1C5D)1Lub. Whereas the centromeric heterochromatin was clearly resistant to DNase I, the interstitial C-band showed very high DNase I sensitivity. Among centromeric C-bands, the heterochromatin in Robertsonian fusion biarmed chromosomes was more resistant to DNase I action than was the centromeric heterochromatin of the acrocentric chromosomes.  相似文献   

9.
We isolated Microtus agrestis-mouse somatic cell hybrid clones which had retained either the active or the inactive M. agrestis X chromosome. In both hybrid clones the X chromosomes retained their original chromatin conformation as studied by the in situ nick translation technique — the active X chromosome retained its high sensitivity to DNase I while the inactive one remained insensitive. A clone in which the hypoxanthine guanine phosphoribosyltransferase (HPRT) gene had been spontaneously reactivated was isolated from the hybrid containing the inactive X chromosome. The in situ nick translation technique was used to study possible DNA conformation changes in the euchromatin of the inactive X chromosome with special reference to the reactivated HPRT locus. We found that the euchromatin in this X chromosome exhibited the same low sensitivity to DNase I as is characteristic of the inactive X chromosome.Professor Marcus passed away on 2 January 1987  相似文献   

10.
A distinct reverse (R-) banding pattern was produced on human chromosomes by digesting chromosome spreads with pancreatic deoxyribonuclease I (DNase I) in the presence of an excess of chromomycin A3 (CMA), followed by staining with Giemsa. The banding pattern corresponds with that obtained by chromomycin A3 fluorescence, and bands which fluorescence brightly with chromomycin appear darkly with Giemsa. The same relationship was observed in two plants, Scilla siberica and Ornithogalum caudatum, which have contrasting types of heterochromatin. Chromomycin bright C-bands stained darkly with the CMA/DNase I technique, whereas chromomycin negative C-bands appeared lightly stained. The digestion patterns are thought to reflect the variation in chromomycin binding capacity along the chromosome with R-bands and dark C-bands being sites which preferentially bind the antibiotic.  相似文献   

11.
Several restriction enzymes (HindIII, HaeIII, MspI, HpaII, EcoRI, KpnI, and NotI) were evaluated for their ability to induce bands in human metaphase chromosomes during in situ nick translation. MspI and HpaII were able to induce a completely developed R-band pattern. Preferential cleavage of R-band chromatin is due to the presence of unmethylated CpG-residues present in CpG-rich islands, which are apparently unevenly distributed and mainly concentrated in R-bands.  相似文献   

12.
13.
14.
Mapping of DNAase I sensitive regions on mitotic chromosomes   总被引:8,自引:0,他引:8  
B S Kerem  R Goitein  G Diamond  H Cedar  M Marcus 《Cell》1984,38(2):493-499
We have shown that in fixed mitotic chromosomes from female G. gerbillus cells the inactive X chromosome is distinctly less sensitive to DNAase I than the active X chromosome, as demonstrated by in situ nick translation. These results indicated that the specific chromatin conformation that renders potentially active genes sensitive to DNAase I is maintained in fixed mitotic chromosomes. We increased the sensitivity and accuracy of in situ nick translation using biotinylated dUTP and a specific detection and staining procedure instead of radioactive label and autoradiography and now show that in both human and CHO chromosomes, the DNAase I sensitive and insensitive chromosomal regions form a specific dark and light banding pattern. The DNAase I sensitive dark D-bands usually correspond to the light G-bands, but not all light G-bands are DNAase I sensitive. Identifiable regions of inactive constitutive heterochromatin are in a DNAase I insensitive conformation. Our methodology provides a new and important tool for studying the structural and functional organization of chromosomes.  相似文献   

15.
The sensitivity to DNase I of the meiotic sex chromosomes of the male mouse was determined by in situ nick translation. At pachytene and diakinesis-metaphase I, six segments, four at the ends of the X and Y chromosomes and two at internal sites on the X chromosome, were found to be more sensitive than the other parts of these chromosomes. The sensitive segments presumably reflect an active or potentially active chromatin conformation which is maintained in the sex chromosomes despite the earlier reported, almost complete cessation of uridine incorporation. The distribution of regions which are sensitive to DNase I corresponds to that of early DNA replication bands. Active conformation patterns like those figured here, probably exist in the sex chromosomes of other mammals as well.  相似文献   

16.
Jablonka  Eva  Goitein  Ruth  Marcus  Menashe  Cedar  Howard 《Chromosoma》1985,93(2):152-156
Summary We have examined the effect of 5-azacytidine (5-aza-C) induced hypomethylation of DNA on the time of replication and DNase I sensitivity of the X chromosomes of female Gerbillus gerbillus (rodent) lung fibroblast cells. Using in situ nick translation to visualise the potential state of activity of large regions of metaphase chromosomes we show that 5-aza-C causes a dramatic increase in the DNase-I sensitivity of the entire inactive X chromosome of female G. gerbillus cells and this increase in nuclease sensitivity correlates with a large shift in the time of replication of the inactive X chromosome from late S phase to early S phase. These effects of 5-aza-C on the inactive X chromosome are associated with a 15% decrease in DNA methylation. Our results indicate that DNA methylation concomitantly affects both the time of replication and the chromatin conformation of the inactive X chromosome.  相似文献   

17.
Nick translation of the DNA of conventionally prepared human metaphase chromosomes using DNase I and biotin dUTP combined with streptavidin-phosphatase-detection assay produced a banding-like appearance. This pattern seems to be due to differences in DNase I sensitivity along the chromosomes. The Y chromosome could be clearly distinguished from the other chromosomes because of its intensely dark labelled heterochromatic region. In addition to DNase I concentration, hypotonic treatment seems to be an important methodological factor influencing band resolution. Together with recently published similar methods these results indicate that in situ nick translation using biotinylated nucleotides may develop into a useful technique to overcome several problems of human cytogenetics.  相似文献   

18.
In situ nick translation of mammalian chromosomes by restriction endonuclease treatment to nick the chromosomal DNA, and 'translation' in the presence of DNA polymerase I and biotinylated dUTP, results in a distinct banding pattern. Further experiments have elucidated the mechanisms producing these bands. The hypothesis is presented that differences in the local conformation of the DNA-protein complex, rather than the DNA sequence itself, lead to the nick translation bands. The different DNase I sensitivity along the chromosomes suggests that the bands, which were clearly evident, reflect morphological units closely related to biological functions.  相似文献   

19.
The disappearance of defined restriction fragments of the beta 1-globin, an albumin and the A1 vitellogenin gene was quantitated after DNase I digestion and expressed by a sensitivity factor defined by a mathematical model. Analysis of naked DNA showed that the gene fragments have similar but not identical sensitivity factors. DNase I digestion of chromatin revealed for the same gene fragments sensitivity factors differing over a much wilder range. This is correlated to the activity of the genes analyzed: the beta 1-globin gene fragment is more sensitive to DNase I in chromatin of erythrocytes compared to hepatocytes whereas the albumin gene fragment is more sensitive to DNase I in chromatin of hepatocytes. The A1 vitellogenin gene has the same DNase I sensitivity in both cell types. Comparing the DNase I sensitivity of the three genes in their inactive state we suggest that different chromatin conformations may exist for inactive genes.  相似文献   

20.
DNase I-hypersensitivity of rat spermatogenic cells was analyzed 1) to establish overall patterns of hypersensitivity in individual cell types, 2) to correlate these patterns with known changes in chromatin organization and function, and 3) to provide a foundation for further analyses examining DNase I-hypersensitivity and the localization of specific genes during spermatogenesis. Parameters for in situ nick translation, using radioactive and fluorescent probes to visualize DNase I-hypersensitive regions (DHR), were established for fixed and sectioned testicular preparations, permeabilized cells, and isolated germ cell nuclei. As anticipated, the pattern of DHR changed in a cell-type specific manner during the course of spermatogenesis, reflective of known stage-dependent alterations in the composition and structure of both the chromatin and the nuclear lamina/matrix as well as changes in gene expression. DHR in preleptotene spermatocytes were primarily peripheral, while in pachytene spermatocytes they were localized along the condensed chromosomes. The pattern of DHR changed from "checkerboard" in steps 7-8 round spermatid nuclei to "lamellar" in steps 10-11 elongating spermatids. In steps 12-13 elongating spermatids. DHR were localized throughout the nuclei or in a graded manner--increasing from anterior to posterior and mirroring the pattern of chromatin condensation. However, unlike the case in other stages, DNA of steps 12-13 elongating spermatids was exquisitely sensitive to nick translation even in the absence of exogenous DNase I. In contrast to the labeling of earlier stages, steps 16-19 spermatids and mature spermatozoa did not demonstrate DNase I-hypersensitivity under any conditions employed. A variety of agents that interact with topoisomerase II and DNA (teniposide, novobiocin, ethidium bromide, and adenosine triphosphate) were tested to determine the basis for the unique sensitivity to nick translation of steps 12-13 elongating spermatids. None of the agents tested, however, affected this unique labeling. The sensitivity of steps 12-13 elongating spermatids to nick translation in the absence of exogenous nuclease indicators the presence of endogenous nicks, which may relieve torsional stress and aid rearrangement as the chromatin is packaged into a form characteristic of the mature spermatozoon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号