首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
D K Whittaker 《Cryobiology》1974,11(3):202-217
Tissues frozen by means of a cryosurgical probe have been examined by electron microscopy following techniques designed to preserve the ice crystal spaces.Ice crystals appeared similar whether tissues were quenched or not following cryosurgery and the various techniques of dehydration resulted in similar ice crystal architecture.Ice crystal spaces in the area deep to the freezing probe were intracellular both in epithelium and muscle although in the muscle zone some fibers contained large and others small crystal spaces. It is suggested that this might be due to variations in the local blood supply.At the periphery of the frozen area ice crystals were usually extracellular producing gross distortion of the cells which, however, retained intracellular structural integrity. These results are consistent with the belief of many workers that intracellular ice is lethal while extracellular ice is not, but no evidence of penetration of cell membrane by ice crystals was seen.  相似文献   

2.
Pieces excised from leaf bases and laminae of seedlings of Triticum aestivum L. cv. Lennox were slowly frozen, using a specially designed apparatus, to temperatures between 2° and 14° C. These treatments ranged from non-damaging to damaging, based on ion-leakage tests to be found in the accompanying report (Pearce and Willison 1985, Planta 163, 304–316). The frozen tissue pieces were then freeze-fixed by rapidly cooling them, via melting Freon, to liquid-nitrogen temperature. The tissue was subsequently prepared for electron microscopy by freeze-etching. Ice crystals formed during slow freezing would tend to be much larger than those formed during subsequent freeze-fixation. Ice crystals surrounding the excised tissues were much larger in the frozen than in the control tissues (the latter rapidly freeze-fixed from room temperature). Large ice crystals were present between cells of frozen laminae and absent from controls. Intercellular spaces were infrequent in control leaf bases and no ice-filled intercellular spaces were found in frozen leaf bases. Intracellular ice crystals were smaller in frozen tissues than in controls. It is concluded that all ice formation before freeze-fixation was extracellular. This extracellular ice was either only extra-tissue (leaf bases), or extra-tissue and intercellular (laminae). Periplasmic ice was sometimes present, in control as well as slowly frozen tissues, and the crystals were always small; thus they were probably formed during freeze-fixation rather than during slow freezing. The plasma membrane sometimes showed imprints of cell-wall microfibrils. These were less abundant in leaf bases at 8° C than in controls, and were present on only a minority of plasma membranes from laminae. Therefore, extracellular ice probably did not compress the cells substantially, and changes in cell size and shape were possibly primarily a result of freezing-induced dehydration. Fine-scale distortions (wrinkles) in the plasma membrane, while absent from controls, were present, although only rarely, in both damaged and non-damaged tissues; they were therefore ice-induced but not directly related to the process of damage.  相似文献   

3.
Taking advantage of their optical transparency, we clearly observed the third stage infective juveniles (IJs) of Steinernema feltiae freezing under a cryo-stage microscope. The IJs froze when the water surrounding them froze at −2°C and below. However, they avoid inoculative freezing at −1°C, suggesting cryoprotective dehydration. Freezing was evident as a sudden darkening and cessation of IJs'' movement. Freeze substitution and transmission electron microscopy confirmed that the IJs of S. feltiae freeze intracellularly. Ice crystals were found in every compartment of the body. IJs frozen at high sub-zero temperatures (−1 and −3°C) survived and had small ice crystals. Those frozen at −10°C had large ice crystals and did not survive. However, the pattern of ice formation was not well-controlled and individual nematodes frozen at −3°C had both small and large ice crystals. IJs frozen by plunging directly into liquid nitrogen had small ice crystals, but did not survive. This study thus presents the evidence that S. feltiae is only the second freeze tolerant animal, after the Antarctic nematode Panagrolaimus davidi, shown to withstand extensive intracellular freezing.  相似文献   

4.
T Nei 《Cryobiology》1976,13(3):278-286
The extent of hemolysis of human red blood cells suspended in different concentrations of glycerol and frozen at various cooling rates was investigated on the basis of morphological observation in the frozen state. Hemolysis of the cells in the absence of glycerol showed a V-shaped curve in terms of cooling rates. There was 70% hemolysis at an optimal cooling rate of approximately 103 °C/min and 100% hemolysis at all other rates tested. Morphologically, a lower than optimal cooling rate resulted in cellular shrinkage, while a higher than optimal rate resulted in the formation of intracellular ice.The cryoprotective effect of glycerol was dependent upon its concentration and on the cooling rate. Samples frozen at 103 and 104 °C/min showed freezing patterns which differed from cell to cell. The size of intraand extracellular ice particles became smaller, and there was less shrinkage or deformation of cells as the rate of cooling and concentration of glycerol were increased.There was some correlation between the morphology of frozen cells and the extent of post-thaw hemolysis, but the minimum size of intracellular ice crystals which might cause hemolysis could not be estimated. As a cryotechnique for electron microscopy, the addition of 30% glycerol and ultrarapid freezing at 105 °C/min are minimum requirements for the inhibition of ice formation and the prevention of the corresponding artifacts in erythrocytes.  相似文献   

5.
《Cryobiology》2010,60(3):302-307
Characterization of intracellular ice formed during the cooling procedures of cells significantly benefits the development and optimization design of cryopreservation or cryosurgery techniques. In this study, we investigated the influence of the concentration of extracellular non-permeable and permeable solutes on the melting points of the intracellular ice in mouse oocytes using cryomicroscopy. The results showed that the melting points of the intracellular ice are always lower than the extracellular ice. Based on this observation and the Gibbs–Thomson relation, we established a physical model to calculate the size of intracellular ice crystals and described its relationship with the concentrations of intracellular permeating solutes and macromolecules. This model predicts that the increased concentration of macromolecules in cells, by increasing the extracellular non-permeating solute concentration, can significantly lower the required concentration of permeable solutes for intracellular vitrification. The prediction was tested through the cryomicroscopic observation of the co-existence of intracellular vitrification and extracellular crystallization during cooling at 100 °C/min when the extracellular solutions contain 5 molal (m) ethylene glycol and 0.3 to 0.6 m NaCl.  相似文献   

6.
Characterization of intracellular ice formed during the cooling procedures of cells significantly benefits the development and optimization design of cryopreservation or cryosurgery techniques. In this study, we investigated the influence of the concentration of extracellular non-permeable and permeable solutes on the melting points of the intracellular ice in mouse oocytes using cryomicroscopy. The results showed that the melting points of the intracellular ice are always lower than the extracellular ice. Based on this observation and the Gibbs–Thomson relation, we established a physical model to calculate the size of intracellular ice crystals and described its relationship with the concentrations of intracellular permeating solutes and macromolecules. This model predicts that the increased concentration of macromolecules in cells, by increasing the extracellular non-permeating solute concentration, can significantly lower the required concentration of permeable solutes for intracellular vitrification. The prediction was tested through the cryomicroscopic observation of the co-existence of intracellular vitrification and extracellular crystallization during cooling at 100 °C/min when the extracellular solutions contain 5 molal (m) ethylene glycol and 0.3 to 0.6 m NaCl.  相似文献   

7.
Tumor cells of an ascites sarcoma of rat were primarily frozen very rapidly with the original host ascitic fluid at ?27 °C by the spraying method. Frozen specimens were fractured and replicated at about ?100 °C under vacuum by a special spray-sandwich method for freeze-etching, and the morphological appearance of ice crystals formed in and around the frozen cells were observed by electron microscopy.The cells cooled very rapidly at ?27 °C actually froze intracellularly, and intracellular ice crystals ranged from 0.03 to 0.5 μm in grain size due to the initial freezing rate of the specimens. In the cells having granulous intracellular ice crystals less than 0.05 μm in grain size, cytoplasmic organelles seemed to maintain their original structures.We suggested in our previous report that these tumor cells, frozen very rapidly at temperatures above ?30 °C, survived intracellular freezing as long as they remained translucent, and optically no ice crystals appeared within them, as seen in intact unfrozen cells. It may therefore be concluded that the tumor cells frozen very rapidly at temperatures near ?30 °C actually freeze intracellularly and probably maintain their viability as long as the size of individual intracellular ice-crystals is kept smaller than 0.05 μm, although the exact critical size of innocuous intracellular ice crystals is uncertain.  相似文献   

8.
Calorimetric analysis indicates that 82% of the body water of Hemideina maori is converted into ice at 10 degrees C. This is a high proportion and led us to investigate whether intracellular freezing occurs in H. maori tissue. Malpighian tubules and fat bodies were frozen in haemolymph on a microscope cold stage. No fat body cells, and 2% of Malpighian tubule cells froze during cooling to -8 degrees C. Unfrozen cells appeared shrunken after ice formed in the extracellular medium. There was no difference between the survival of control tissues and those frozen to -8 degrees C. At temperatures below -15 degrees C (lethal temperatures for weta), there was a decline in survival, which was strongly correlated with temperature, but no change in the appearance of tissue. It is concluded that intracellular freezing is avoided by Hemideina maori through osmotic dehydration and freeze concentration effects, but the reasons for low temperature mortality remain unclear. The freezing process in H. maori appears to rely on extracellular ice nucleation, possibly with the aid of an ice nucleating protein, to osmotically dehydrate the cells and avoid intracellular freezing. The lower lethal temperature of H. maori (-10 degrees C) is high compared to organisms that survive intracellular freezing. This suggests that the category of 'freezing tolerance' is an oversimplification, and that it may encompass at least two strategies: intracellular freezing tolerance and avoidance.  相似文献   

9.
Frozen thin sections and sections from freeze-dried and embedded tissue are used for the autoradiographic localization of diffusible substances at the electron microscope level. The presence of ice crystals in such sections may limit the autoradiographic resolution. Ice crystals are formed during freezing and may grow during subsequent processing of tissue. The contribution of ice crystal growth to the final image was estimated by measuring the distribution of the ice crystal sizes in freeze-etch replicas and in sections from freeze-dried and embedded tissues. A surface layer (10-15 mu) without visible ice crystals was present in both preparations. Beneath this surface layer the diameter of ice crystals increased towards the interior with the same relationship between crystal size and distance from the surface in the freeze-etch preparation as in the freeze-dry preparation. Ice crystal growth occurring during a much longer time during freeze-drying compared to freeze-etching does not significantly contribute to the final image in the electron microscope. The formation of ice crystals during freezing determines to a large extent the image (and therefore the autoradiographic resolution) of freeze-dry preparations and this probably holds also for thin cryosections of which examples are given.  相似文献   

10.
The pattern of ice formation during the freezing of Panagrolaimus davidi, an Antarctic nematode that can survive intracellular ice formation, was visualised using a freeze substitution technique and transmission electron microscopy. Nematodes plunged directly into liquid nitrogen had small ice crystals throughout their tissues, including nuclei and organelles, but did not survive. Those frozen at high subzero temperatures showed three patterns of ice formation: no ice, extracellular ice, and intracellular ice. Nematodes subjected to a slow-freezing regime (at -1 degrees C) had mainly extracellular ice (70.4%), with the bulk of the ice in the pseudocoel. Some (24.8%) had no ice within their bodies, due to cryoprotective dehydration. Nematodes subjected to a fast-freezing regime (at -4 degrees C) had intracellular (54%) and extracellular (42%) ice. Intracellular ice was confined to the cytoplasm of cells, with organelles in the spaces in between ice crystals. The survival of nematodes subjected to the fast-freezing regime (53%) was less than those subjected to the slow-freezing regime (92%).  相似文献   

11.
Cold treatment of donor carnation plants (Dianthus caryophyllus L.) at 4 C for 3 days or more resulted in a doubling in the percentage of excised, frozen shoot apices which survived freezing and a 6- to 7-fold increase in the percentage which formed leaf primordia or shoots. The optimal freezing parameters for both survival and differentiation were as follows: size of the shoot apex-two to three sets of leaf primordia; dimethylsulfoxide concentration in the freezing solution-5%; time in dimethylsulfoxide prior to freezing->30 minutes; average cooling rate-≥50 C/minute; initial warming rate-about 1450 C/minute. In general, the cells in the meristematic region of the shoot apex remained viable after freezing while those in the leaf primordia did not. Viability of the meristematic cells appears to be maintained by preventing the growth of intracellular ice crystals formed during rapid cooling by rapidly passing the tissue through the temperature zone in which lethal crystal growth occurs (mechanism of Luyet). Applications of this technique are discussed.  相似文献   

12.
Yang G  Zhang A  Xu LX 《Cryobiology》2011,(1):38-45
Direct cell injury in cryosurgery is highly related to intracellular ice formation (IIF) during tissue freezing and thawing. Mechanistic understanding of IIF in tumor cells is critical to the development of tumor cryo-ablation protocol. In aid of a high speed CMOS camera system, the events of IIF in MCF-7 cells have been studied using cryomicroscopy. Images of ‘darkening’ type IIF and recrystallization are compared between cells frozen with and without ice seeding. It is found that ice seeding has significant impact on the occurrence and growth of intracellular ice. Without ice seeding, IIF is observed to occur over a very small range of temperature (∼1 °C). The crystal dendrites are indistinguishable, which is independent of the cooling rate. Ice crystal grows much faster and covers the whole intracellular space in comparison to that with ice seeding, which ice stops growing near the cellular nucleus. Recrystallization is observed at the temperature from −13 °C to −9 °C during thawing. On the contrary, IIF occurs from −7 °C to −20 °C with ice seeding at a high subzero temperature (i.e., −2.5 °C). The morphology of intracellular ice frozen is greatly affected by the cooling rate, and no ‘darkening’ type ice formed inside cells during thawing. In addition, the intracellular ice formation is directional, which starts from the plasma membrane and grows toward the cellular nucleus with or without ice seeding. These results can be used to explain some findings of tumor cryosurgery in vivo, especially the causes of insufficient killing of tumor cells in the peripheral area near vessels.  相似文献   

13.
Ice Morphology: Fundamentals and Technological Applications in Foods   总被引:4,自引:0,他引:4  
Freezing is the process of ice crystallization from supercooled water. Ice crystal morphology plays an important role in the textural and physical properties of frozen and frozen-thawed foods and in processes such as freeze drying, freeze concentration, and freeze texturization. Size and location of ice crystals are key in the quality of thawed tissue products. In ice cream, smaller ice crystals are preferred because large crystals results in an icy texture. In freeze drying, ice morphology influences the rate of sublimation and several morphological characteristics of the freeze-dried matrix as well as the biological activity of components (e.g., in pharmaceuticals). In freeze concentration, ice morphology influences the efficiency of separation of ice crystals from the concentrated solution. The cooling rate has been the most common variable controlling ice morphology in frozen and partly frozen systems. However, several new approaches show promise in controlling nucleation (consequently, ice morphology), among them are the use of ice nucleation agents, antifreeze proteins, ultrasound, and high pressure. This paper summarizes the fundamentals of freezing, methods of observation and measurement of ice morphology, and the role of ice morphology in technological applications.  相似文献   

14.
Artificial gels, composed of collagen with or without hyaluronate (HA), a glycosaminoglycan (GAG), and chondroitin sulfate (CS), were prepared and quick-frozen for the purpose of studying the influence of composition and concentration on ice patterns. Dilute gels were spread on coverslips, plunged into a slush of 30% isopentane/70% propane (-185 degrees C), freeze-substituted, and examined by phase-contrast microscopy. Ice patterns were revealed as "ice cavities" in the gel after freeze-substitution. Ice morphology in the gels was gel-type-specific, suggesting that composition in dilute gels can influence ice pattern formation. Crystallization patterns reflecting high, intermediate, and low rates of freezing were observed in all gel types. Intermediate freezing in differentiating gel-type-specific ice patterns. Gels which included hyaluronate (HA) and chondroitin sulfate (CS) altered the ice crystal pattern commonly observed in collagen gels. Ice structure in collagen gels consisted predominantly of long, parallel crystals in the herringbone pattern. Ice crystals separated gel into thin, unbranched fibers with a primary spacing of approximately 2 microns. Ice morphology in HA gels formed a mosaic consisting of packets of ice crystals. Contiguous packets were often oriented at right angles to each other. Periodic crossbridges interconnect primary gel fibers of HA gels and interrupt the lengthwise growth of ice crystals. Smooth beads were visible on primary strands in HA gels frozen at intermediate velocities. The addition of CS to collagen gels resulted in formation of randomly oriented ice crystals in gels frozen at intermediate rates. CS has little influence on ice morphology at low freezing velocities. Primary strands in CS gels were decorated with rough-surfaced, osmiophilic aggregates.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Mechanism of cryoprotection by extracellular polymeric solutes.   总被引:1,自引:1,他引:0       下载免费PDF全文
To elucidate the means by which polymer solutions protect cells from freezing injury, we cooled human monocytes to -80 degrees C or below in the presence of various polymers. Differential scanning calorimetric studies showed that those polymers which protect cells best have a limiting glass transition temperature (T'g) of approximately -20 degrees C; those with a T'g significantly higher or lower did not protect. Freeze-etch electron micrographs indicated that intracellular ice crystals had formed during this freezing procedure, but remained smaller than approximately 300 nm in the same proportion of cells as survived rapid thawing. We propose that cryoprotection of slowly frozen monocytes by polymers is a consequence of a T'g of -20 degrees C in the extracellular solution. In our hypothesis, the initial concentration and viscosity of protective polymer solutions reduce the extent and rate of cell water loss to extracellular ice and limit the injurious osmotic stress, which cells face during freezing at moderate rates to -20 degrees C. Below -20 degrees C, glass formation prevents further osmotic stress by isolating cells from extracellular ice crystals, virtually eliminating cell water loss at lower temperatures. On the other hand, the protective polymer solutions will allow some diffusion of water away from cells at temperatures above T'g. If conditions are correct, cells will concentrate the cytoplasm sufficiently during the initial cooling to T'g to avoid lethal intracellular freezing between T'g and the intracellular Tg, which has been depressed to low temperatures by that concentration. Thus, when polymers are used as cryoprotective agents, cell survival is contingent upon maintenance of osmotic stress within narrow limits.  相似文献   

16.
Visualization of freezing damage. II. Structural alterations during warming   总被引:4,自引:0,他引:4  
H Bank 《Cryobiology》1973,10(2):157-170
There is a growing amount of indirect evidence which suggests that the loss in viability of rapidly cooled cells is due to recrystallization of intracellular ice. This possibility was tested by an evaluation of the formation of morphological artifacts in rapidly cooled cells to determine whether this process can account for the loss in viability. Samples of the common yeast Saccharomyces cerevisiae were frozen at 1.8 or 1500 °C/min, and the structure of the frozen cells was examined by the use of freeze-fracturing techniques. Other cells cooled at the same rate were warmed to temperatures ranging from ?20 ° to ?50 °C and then rapidly cooled to ?196 °C, a procedure that should cause small ice crystals to coalesce by the process of migratory recrystallization. Cells cooled at 1500 °C/min and then warmed to temperatures above ?40 °C formed large intracellular ice crystals within 30 min, and appreciable recrystallization occurred at temperatures as low as ?45 °C. Cells cooled at 1.8 °C/min and warmed to temperatures as high as ?20 °C underwent little structural alteration. These results demonstrate that intracellular ice can cause morphological artifacts. The correlation between the temperature at which rapid recrystallization begins and the temperature at which the cells are inactivated indicates that recrystallization is responsible for the death of rapidly cooled cells.  相似文献   

17.
J.K. Sherman  K.C. Liu 《Cryobiology》1982,19(5):503-510
Tails of mouse epididymides were treated as follows: control, unfrozen with and without cryoprotective agents (CPA); frozen (to below ?80 °C), slowly (8 °C/min), and rapidly (18 °C/sec), with and without CPA. Intracellular and/or extracellular location of CPA, at least glycerol, was influenced, respectively, by high (22 °C) or low (0 °C) exposure temperature. Standard procedures in electron microscopy were employed and the frozen state preserved by freeze-substitution. Motility before freezing and after thawing was the criterion of cryosurvival.Results showed no evidence of deleterious ultrastructural effects of freezing at rates compared, or of benefits of CPA, regardless of their cellular location. Differences were noted, however, in the appearance of spermatozoa in the frozen state, as a function of the rate of freezing but not as a function of the presence, absence, or location of either glycerol of DMSO. Rapidly frozen cells showed intracellular ice formation in the acrosome, neck, midpiece, and tail regions; there was no intranuclear ice, and extracellular ice artifacts were small. Slowly frozen cells showed large extracellular ice artifacts with evidence of shrinkage distortion due to the dehydration induced by extracellular ice. No spermatozoa survived any of the freezing treatments, showing the lethal effect of both extracellular ice during slow freezing and of intracellular and/or extracellular ice during rapid freezing.  相似文献   

18.
Seizo Fujikawa 《Cryobiology》1980,17(4):351-362
The present study examined the damaging effect of intracellular ice on plasma membranes of human erythrocytes. Ice crystals of 0.2–2.0 μm in diameter were formed within the cells as the result of rapid freezing of erythrocytes at the cooling rates around 8000 °C/min. Freeze-fracture and etching studies revealed the ultrastructural alterations of membranes caused by the formation of intracellular ice.In the membrane regions which were in direct contact with intracellular ice, depressions resembling “worm-eaten spots” ranging from 400 to 3000 Å in diameter were observed both on the etched protoplasmic fracture faces (PF) and the exoplasmic surfaces (ES); no perforations were detected in the worm-eaten spots as visualized by slight etching, but artificial destructions occurred on these worm-eaten spots following the increase of etching. The most important phenomenon concerning membrane damage was that in the worm-eaten spots the fracture did not occur along the inner hydrophobic plane of membrane.It was suggested that the formation of intracellular ice in direct contact with a membrane brought about molecular disorganization of bilayer membrane. The presence of these altered membrane regions seems to be responsible for the postthawed hemolysis of the intracellularly frozen erythrocytes.  相似文献   

19.
T. I. Olsson 《Oecologia》1988,74(4):492-495
Summary In a boreal river about 95% of the individuals of Gyraulus acronicus overwinter in the littoral zone which freezes solid each year. These snails were compared with those overwintering in the unfrozen sublittoral area: The littoral snails had a higher survival rate, a higher tissue dry mass/CaCO3 ratio, and they deposited a higher number of eggs. Littoral snails had a more pronounced tissue degrowth during winter. High winter survival in the frozen littoral zone, a refuge totaly free from predation, indicates that overwintering here is advantageous. However, during frozen periods of short duration (<1 month) the high initial mortality to which the snails were exposed when freezing into the ice was not compensated for by higher survival after the initial phase. Under such conditions when the frozen period is very short the snails would have higher survival in unfrozen parts and are thus expected to avoid the ice.  相似文献   

20.
Boar semen was analysed by electron microscopy coupled to image analysis and X-ray energy dispersive spectroscopy, during the usual process for freezing and thawing in field conditions. Freeze-substitution and freeze-quenching permitted recording of real or potential intracellular ice before, during, and after freezing. Heads and flagella displayed two different osmotic properties before freezing. Heads were dehydrated progressively before and during freezing, while flagella were hydrated before freezing and were only dehydrated during freezing. All parts of the thawed cells were rehydrated. Ice crystal damage was mostly present in frozen mitochondria and axonemes and the acrosomes were strongly affected by thawing. The total amounts of Na, Cl, Ca, K, Mg, and Zn per cell were only elevated in frozen and thawed midpieces while the heads were permeable both to water and elements at that time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号