首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We recently isolated PsAD1 cDNA from pea (Pisum sativum L. cv. Alaska) seedlings, whose mRNA abundantly accumulated in dormant axillary buds and disappeared after decapitation [Madoka and Mori (2000) Plant Cell Physiol. 41: 274]. To further elucidate the function of PsAD1, we investigated the temporal and spatial distribution patterns of PsAD1 protein using Western blot and immunocytochemical analyses. Western blot analyses showed that accumulation patterns of PsAD1 protein in axillary buds after decapitation and in response to IAA and 6-benzyladenine were the same as those of PsAD1 mRNA. Immunocytochemical analyses showed that (1) PsAD1 proteins were localized in the procambia, leaf primordia, apical meristem, and secondary axillary buds in the dormant axillary bud, and this distribution was the same as that of PsAD1 mRNA, (2) PsAD1 proteins acropetally disappeared after decapitation, and (3) the growth of axillary buds occurred in the same manner. These acropetal changes occur in a manner similar to the way in which the procambium differentiates into vascular tissue. These results suggest that PsAD1 plays some role in the inhibition of growth and differentiation, or in the maintenance of the dormant state in axillary buds.  相似文献   

2.
Dormancy-associated gene expression in pea axillary buds.   总被引:10,自引:0,他引:10  
Pea (Pisum sativum L. cv. Alaska) axillary buds can be stimulated to cycle between dormant and growing states. Dormant buds synthesize unique proteins and are as metabolically active as growing buds. Two cDNAs, PsDRM1 and PsDRM2, were isolated from a dormant bud library. The deduced amino acid sequence of PsDRM1 (111 residues) is 75% identical to that of an auxin-repressed strawberry clone. PsDRM2 encodes a putative protein containing 129 residues, which includes 11 repeats of the sequence [G]-GGGY[H][N] (the bracketed residues may be absent). PsDRM2 is related to cold- and ABA-stimulated clones from alfalfa. Decapitating the terminal bud rapidly stimulates dormant axillary buds to begin growing. The abundance of PsDRM1 mRNA in axillary buds declines 20-fold within 6 h of decapitation; it quickly reaccumulates when buds become dormant again. The level of PsDRM2 mRNA is about three fold lower in growing buds than in dormant buds. Expression of PsDRM1 is enhanced in other non-growing organs (roots root apices; fully-elongated stems >elongating stems), and thus is an excellent “dormancy” marker. In contrast, PsDRM2 expression is not dormancy-associated in other organs. Received: 10 December 1997 / Accepted: 23 January 1998  相似文献   

3.
Axillary buds of intact pea seedlings (Pisum sativum L. cv Alaska) do not grow and are said to be dormant. Decapitation of the terminal bud promotes the growth of these axillary buds, which then develop in the same manner as terminal buds. We previously showed that unique sets of proteins are expressed in dormant and growing buds. Here we describe the cloning, sequencing, and expression of a cDNA clone (pGB8) that is homologous to ribosomal protein L27 from rat. RNA corresponding to this clone increases 13-fold 3 h after decapitation, reaches a maximum enhancement of about 35-fold after 12 h, and persists at slightly reduced levels at later times. Terminal buds, root apices, and elongating internodes also contain pGB8 mRNA but fully expanded leaflets and fully elongated internodes do not. In situ hybridization analysis demonstrates that pGB8 mRNA increases in all parts of the bud within 1 h of decapitation. Under appropriate conditions, growing buds can be made to stop growing and become dormant; these buds subsequently can grow again. Therefore, buds have the capacity to undergo multiple cycles of growth and dormancy. RNA gel blots show that pGB8 expression is reduced to dormancy levels as soon as buds stop growing. However, in situ hybridization experiments show that pGB8 expression continues at growing-bud levels in the apical meristem for 2 d after it is reduced in the rest of the bud. When cultured stems containing buds are treated with indoleacetic acid at concentrations ≥10 μm, bud growth and expression of pGB8 in the buds are inhibited.  相似文献   

4.
In intact plants, cells in axillary buds are arrested at the G1 phase of the cell cycle during dormancy. In mammalian cells, the cell cycle is suppressed at the G1 phase by the activities of retinoblastoma tumor suppressor gene (RB) family proteins, depending on their phosphorylation state. Here, we report the isolation of a pea cDNA clone encoding an RB-related protein (PsRBR1, Accession No. AB012024) with a high degree of amino acid conservation in comparison with RB family proteins. PsRBR1 protein was detected as two polypeptides using an anti-PsRBR1 antibody in dormant axillary buds, whereas it was detected as three polypeptides, which were the same two polypeptides and another larger polypeptide 2 h after terminal decapitation. Both in vitro-synthesized PsPRB1 protein and lambda protein phosphatase-treated PsRBR1 protein corresponded to the smallest polypeptide detected by anti-PsRBR1 antibody, suggesting that the three polypeptides correspond to non-phosphorylated form of PsRBR1 protein, and lower- and higher-molecular mass forms of phosphorylated PsRBR1 protein. Furthermore, in vivo labeling with [32P]-inorganic phosphate indicated that PsRBR1 protein was more phosphorylated before mRNA accumulation of cell cycle regulatory genes such as PCNA. Together these findings suggest that dormancy-to-growth transition in pea axillary buds is regulated by molecular mechanisms of cell cycle control similar to those in mammals, and that the PsRBR1 protein has an important role in suppressing the cell cycle during dormancy in axillary buds.  相似文献   

5.
Axillary buds of pea (Pisum sativum L. cv. Alaska) do not growon intact plants. Dormant axillary buds can be stimulated togrow rapidly after decapitation. Here, we isolated cDNAs ofPCNA, cyclinB, cyclinD, and cdc2 from pea. The mRNA expressionlevels of these genes were very low in dormant axillary buds,whereas they remarkably increased after decapitation. Basedon the mRNA accumulation patterns of these genes, we found thatmost cells in dormant axillary buds are arrested at the G1 phasein the cell cycle. There are four buds at the second node onpea seedlings. After decapitation, mRNAs became abundant inthe large and small buds and were kept during the following3 d. After 4 d, mRNAs were still present in the large bud, butnot in the small bud. However, after removal of the large bud,the mRNA levels started to increase again in the small bud.These mRNA accumulation patterns were the same as those afterthe first decapitation. These results suggested that most cellsin axillary buds at the second node are arrested at the G1]phase again and have the capacity to undergo multiple cyclesof dormancy and growth. Moreover, in situ hybridization analysesdemonstrated that PCNA mRNA increased in all parts of the axillarybuds after decapitation. (Received October 31, 1997; Accepted December 11, 1997)  相似文献   

6.
7.
8.
Cloning and sequence analysis of a DNA complementary to the mRNA expressed in undifferentiated mouse F9 teratocarcinoma stem cells but disappearing rapidly after treatment with a tumor-promoting phorbol ester revealed it to be a 1.9 kilobase pairs-long cDNA encoding a protein of 323 amino acid residues. Computer-assisted analyses of the deduced amino acid sequence indicated that this protein contains a typical hydrophobic signal peptide consisting of 33 amino acid residues and six putative membrane-spanning segments. The deduced amino acid sequence, as a whole, bears no significant sequence homology to any previously described protein.  相似文献   

9.
The amino acid sequence of rat ribosomal protein S10 was deduced from the sequence of nucleotides in a recombinant cDNA and confirmed from the NH2-terminal amino acid sequence of the protein. Ribosomal protein S10 contains 165 amino acids and has a molecular mass of 18917 Da. Hybridization of the cDNA to digests of nuclear DNA suggests that there are 17-20 copies of the S10 gene. The mRNA for the protein is about 750 nucleotides in length. Ribosomal protein S10 has several possible internal duplications; one is a tandem repeat of ten residues that is basic and contains two or three prolines.  相似文献   

10.
Histone proteins are integral part of chromatin and their expression is typically linked to DNA replication in the S phase of cell cycle. Histone H3 is one of the four histones, along with H2A, H2B and H4, which forms the eukaryotic nucleosome octomer core. Using differential display of mRNA and rapid amplification of cDNA ends (RACE), a full-length Histone H3.1 cDNA (CsH3) was isolated from tea leaves. The open reading frame consisted of 411 nucleotides and deduced amino acid sequence comprised of 136 amino acid residues. CsH3 shared 79-82% and 98% identity at nucleotide and amino acid sequences, respectively with Histone H3 isolated from other plant species. During active-growth period of tea, higher expression was observed in apical buds that decreased gradually with increasing age of the leaf. During dormancy season, the expression of CsH3 was severely down-regulated in all the leaves studied. CsH3 was found to be down regulated in response to drought stress and ABA treatment and up-regulated by GA(3) treatment. A positive association of CsH3 abundance with active cellular growth suggested its role in plant growth and development.  相似文献   

11.
12.
Cell cycle activity was studied in apical and axillary buds of Norway maple ( Acer platanoides L.), apple ( Malus ' M9 ') , pedunculate oak ( Quercus robur L.), Scots pine ( Pinus sylvestris L.) and rose ( Rosa corymbifera 'Laxa') during dormancy induction and release. Flow cytometric analyses revealed that in dormant buds, cells mainly were quiescent at the G0/G1 phase, while in non-dormant buds, a significantly higher frequency of G2 cells was found in all species. In western blots accumulation of 55 kDa beta -tubulin was found in active growing plant material, whereas in dormant buds the accumulation was much lower or below detection level. It was observed for all species that during dormancy induction the amount of beta -tubulin decreased, while during dormancy release a fast accumulation of beta -tubulin occurred. The dynamics of the beta -tubulin accumulation reflected the dormancy status of tree buds of the five species studied suggesting that the beta -tubulin level might be useful as a marker for the dormancy status in buds of temperate woody species.  相似文献   

13.
The control of bud dormancy in potato tubers   总被引:5,自引:0,他引:5  
Potato (Solanum tuberosum L.) tuber buds normally remain dormant through the growing season until several weeks after harvest. In the cultivar Majestic, this innate dormancy persisted for 9 to 12 weeks in storage at 10° C, but only 3 to 4 weeks when the tubers were stored at 2° C. At certain stages, supplying cytokinins to tubers with innately dormant buds induced sprout growth within 2 d. The growth rate was comparable to that of buds whose innate dormancy had been lost naturally. Cytokinin-treatment did not accelerate the rates of cell division and cell expansion in buds whose innate dormancy had already broken naturally. Gibberellic acid did not induce sprout growth in buds with innate dormancy. We conclude that cytokinins may well be the primary factor in the switch from innate dormancy to the non-dormant state in potato tuber buds, but probably do not control the subsequent sprout growth.Abbreviations tio 6ade 6-(4-hydroxy-3-methylbut-trans-2-enyl amino)purine, zeatin - tio6ado 6-(4-hydroxy-3-methylbut-trans-2-enyl amino)-9--D-ribofuranosyl purine, zeatin riboside  相似文献   

14.
水稻OsTB1基因的结构及其表达分析   总被引:2,自引:0,他引:2  
TCP基因是一类植物中新发现的、可能具有转录因子活性的基因家族,成员包括金鱼草的Cyclodiea (Cyc)、玉米的Teosinte Branched1 (TB1)以及水稻中的PCF1、PCF2等.玉米的TB1基因有维持玉米顶端优势的作用,与分蘖的发生密切相关;水稻和玉米同属禾本科,在发育的过程中都有分蘖的发生.通过筛选水稻的基因组文库,得到了水稻中的一个TB1同源基因Oryza sativa Teosinte Branched1 (OsTB1).该基因不含内含子,基因编码一个长度为388个氨基酸的蛋白,在氨基酸水平上与TB1的同源性为70%,含有保守的TCP区和R区,是属于TCP基因家族的一个成员.RT-PCR和mRNA原位杂交分析结果表明,OsTB1在水稻的侧芽中有很强的表达,在花序中有较弱的表达.以上结果显示该基因可能在水稻侧芽和花序的起始和发育过程中起重要作用.  相似文献   

15.
Identification of molecular markers defining the end of tuber dormancy prior to visible sprouting is of agronomic interest for potato growers and the potato processing industry. In potato tubers, breakage of dormancy is associated with the reactivation of meristem function. In dormant meristems, cells are arrested in the G1/G0 phase of the cell cycle and re-entry into the G1 phase followed by DNA replication during the S phase enables bud outgrowth. Deoxyuridine triphosphatase (dUTPase) is essential for DNA replication and was therefore tested as a potential marker for meristem reactivation in tuber buds. The corresponding cDNA clone was isolated from potato by PCR. The deduced amino acid sequence showed 94% similarity to the tomato homologue. By employing different potato cultivars, a positive correlation between dUTPase expression and onset of tuber sprouting could be confirmed. Moreover, gene expression analysis of tuber buds during storage time revealed an up-regulation of the dUTPase 1 week before visible sprouting occurred. Further analysis using an in vitro sprout assay supported the assumption that dUTPase is a good molecular marker to define the transition from dormant to active potato tuber meristems.  相似文献   

16.
17.
The primary structure of rat ribosomal protein L35   总被引:3,自引:0,他引:3  
The amino acid sequence of the rat 60S ribosomal subunit protein L35 was deduced from the sequence of nucleotides in a recombinant cDNA and confirmed from the NH2-terminal amino acid sequence of the protein. Ribosomal protein L35 has 122 amino acids (the NH2-terminal methionine is removed after translation of the mRNA) and has a molecular weight of 14,412. Hybridization of the cDNA to digests of nuclear DNA suggests that there are 15-17 copies of the L35 gene. The mRNA for the protein is about 570 nucleotides in length. Rat L35 is related to the archaebacterial ribosomal proteins Halobacterium marismortui L33 and Halobacterium halobium L29E; it is also related to Escherichia coli L29 and to other members of the prokaryotic ribosomal protein L29 family. The protein contains a possible internal duplication of 11 residues.  相似文献   

18.
Using cDNA representational difference analysis (cDNA RDA), we isolated a cDNA named GDA-1 from a cDNA library constructed with mRNA from short-day (SD) grown G2 pea apical tissue. The amino acid sequence deduced from GDA-1 shares partial identity with the B2 protein which is expressed during embryogenesis of carrot cells. Northern analysis showed that GDA-1 mRNA is abundant in SD-grown G2 pea apical buds. In long-day (LD) conditions, there was almost no detectable GDA-1 mRNA. When LD-grown G2 peas were kept in continuous darkness for 24 h, the GDA-1 mRNA content reached a level equivalent to about 50% of that in the SD samples. On the other hand, when SD-grown peas were transferred into the light for 24 h, the amount of hybridizable GDA-1 mRNA dropped to the same as that of LD-grown plants. GDA-1 expression was found to be independent of flower initiation time. GA3 application in vitro resulted in rapid accumulation of GDA-1 mRNA in LD-grown G2 pea apical buds, which is compatible with its delaying effect on apical senescence. Time-course experiments revealed that GDA-1 is induced within 15 min of GA3 application. Exogenous GA3 did not influence the expression of GDA-1 in SD-grown G2 peas. Since both photoperiod and GA induce the expression of GDA-1, we speculate that they may activate similar signal transduction pathways in G2 peas. Our work also shows that photoperiod may change the efficiency of gibberellin perception by plants. Received: 27 March 1998 / Accepted: 2 June 1998  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号