首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
δ-Aminolevulinic acid was incorporated in vivo into C-phycocyanin and B-phycoerythrin in two species of the Rhodophyta (Cyanidium caldarium, Porphyridium cruentum) and three species of the Cyanophyta (Anacystis nidulans, Plectonema boryanum, Phormidium luridum). Amino acid analysis of phycocyanin-14C from C. caldarium cells which had been incubated with δ-aminolevulinate-4-14C showed that 84% of the radioactivity incorporated was present in the phycocyanobilin chromophore and less than 16% of the radioactivity cochromatographed with amino acids. These results indicate that δ-aminolevulinate is utilized predominantly via the porphyrin pathway in C. caldarium. Conversely, analysis of phycocyanin-14C prepared from cells of A. nidulans, P. boryanum, and P. luridum which had been incubated with radiolabeled δ-aminolevulinate demonstrated that 85%, 81%, and 93%, respectively, of the radioactivity incorporated cochromatographed with amino acids. The ratio of incorporated radioactivity in amino acids and phycoerythrobilin was 40:60 in P. cruentum phycoerythrin obtained from cells which had been incubated with δ-aminolevulinate-4-14C. Succinate-2-3-14C appeared to be as good a carbon source of amino acids as did C4 and C5 of δ-aminolevulinate. These data demonstrate a major alternate route (other than the porphyrin pathway) of δ-aminolevulinate metabolism in red and blue-green algae. The factors responsible for the extent to which δ-aminolevulinate is utilized for synthesis of porphyrins and their derivatives and routes of δ-aminolevulinate catabolism in the organisms employed are discussed.  相似文献   

2.
Fatty Acid Composition of Unicellular Strains of Blue-Green Algae   总被引:17,自引:4,他引:17  
The fatty acids of 34 strains of unicellular blue-green algae provisionally assigned to the genera Synechococcus, Aphanocapsa, Gloeocapsa, Microcystis, and Chlorogloea by Stanier et al. have been chemically characterized. The strains analyzed can be divided into a series of compositional groups based upon the highest degree of unsaturation of the major cellular fatty acids. Twenty strains fall into the group characterized by one trienoic fatty acid isomer (alpha-linolenic acid), and seven strains fall into a group characterized by another trienoic acid isomer (gamma-linolenic acid). These groups in many cases correlate well with groupings based upon other phenotypic characters of the strains, e.g., deoxyribonucleic acid base composition. The assignment of a strain to a compositional group is not altered when the strain is grown under a variety of different culture conditions. All strains contain glycolipids with the properties of mono- and digalactosyldiglycerides.  相似文献   

3.
Ultrastructure of Blue-Green Algae   总被引:9,自引:6,他引:9       下载免费PDF全文
Two freshwater blue-green algae, Tolypothrix tenuis and Fremyella diplosiphon, and an oscillatorialike marine alga, were found to possess structures on the photosynthetic lamellae which appear to correspond to the phycobilisomes of red algae. These homologous structures are important because they contain the phycobilins which are accessory pigments involved in photosynthesis. As in the red algae, the phycobilisomes were attached on the outer side of each lamellae, i.e., the side facing away from its own membrane pair. Although our study on Anacystis nidulans has not thus far revealed the presence of phycobilisomes, some observations were made on the structure of the polyhedral bodies. After negative staining, the polyhedral bodies were seen to be composed of regularly spaced subunits arranged in a crystalline array. Elongated segmented rods, which differed from the polyhedral bodies, were found in the nuclear region of apparently healthy Tolypothrix cells.  相似文献   

4.
Glycolic acid oxidase activity was detected in cell-free preparations of Anabaena flos-aquae and Oscillatoria sp. by the reduction of 2,6-dichlorophenolindophenol and by the formation of glyoxylate. Enzyme activity was localized in the 20,000 times gravity supernatant fraction, and optimal activity was obtained at pH 8.0. Activity was lost on storing the preparation at 4 C and could not be restored by addition of flavin mononucleotide.  相似文献   

5.
Phycobilisomes in Blue-Green Algae   总被引:1,自引:2,他引:1       下载免费PDF全文
Fifteen species of freshwater blue-green algae, including unicellular, filamentous, and colonial forms, were subjected to a variety of fixatives, fixation conditions, and stains for comparison of the preservation of phycobilisomes. Absorption spectra of the corresponding in vivo and released photosynthetic pigments, in 10 of the species that were maintained in culture, demonstrated the presence of phycocyanin in all 10 species and phycoerythrin in only 2 of them. Spectroscope and electron microscope evidence was obtained for localization of phycobiliproteins in phycobilisomes of Nostoc muscorum. Phycobilisomes were observed in all species examined in situ, strenghening the hypothesis that phycobilisomes are common to all phycobiliprotein-containing photosynthetic blue-green algae.  相似文献   

6.
Host and viral deoxyribonucleic acid (DNA) metabolism in LPP-1-infected Plectonema boryanum was studied by equilibrium centrifugation in CsCl gradients. Approximately 50% of the host DNA is degraded to acid-soluble material between 3 and 7 hr after infection. Most of the acid-soluble product is reincorporated into viral DNA. Incorporation of exogenous (3)H-adenine into viral DNA can be detected very early after infection (within the first 2 hr), but the bulk of viral DNA synthesis occurs between 6 and 8 hr. Both the breakdown of host DNA and the synthesis of viral DNA require protein synthesis during the first few hours of infection.  相似文献   

7.
Respiration in Blue-Green Algae   总被引:10,自引:3,他引:10       下载免费PDF全文
The low rate of endogenous respiration exhibited by the blue-green algae Anacystis nidulans and Phormidium luridum was not increased by the addition of respiratory substrates. However, endogenous respiration was inhibited by low concentrations of cyanide and by high carbon monoxide tensions. In addition, the uncouplers dinitrophenol and carbonyl cyanide p-trifluoromethoxyphenylhydrazone both stimulated the respiratory rate. The transition of cells from the aerobic steady state to anaerobiosis was accompanied by a decrease in the concentration of cellular nicotinamide adenine dinucleotide phosphate (NADP(+)) and adenosine triphosphate (ATP), whereas the concentration of nicotinamide adenine dinucleotide (NAD(+)) was unchanged. Concomitant with the metabolite decreases were stoichiometric increases io reduced NADP(+) (NADPH), adenosine diphosphate, and adenosine monophosphate. A decrease in ATP was also observed after the addition of uncouplers. These data are interpreted as evidence for the association of oxidative phosphorylation with the oxidation of NADP(+)-linked substrates in these algae. Membrane fragments isolated from the algal cells oxidized succinate, malate, ferrocytochrome c, ascorbate-tetramethyl-p-phenylenediamine, and reduced 2,6-dichlorophenol indophenol but did not oxidize NADPH or reduced NAD(+) in a cyanide-sensitive system. Oxidative phosphorylation has not yet been demonstrated in these fragments, but a dark ATP-P(i) exchange, distinct from the lighttriggered exchange associated with photosynthesis, is readily observed. This exchange was inhibited by phloridzin, Atabrine, and uncouplers in concentrations which suggest that the mechanism of oxidative phosphorylation in blue-green algae is different from that found in other bacteria and in mitochondria. These results led to the conclusion that the biochemical basis for obligate autotrophy in these organisms does not lie in the metabolic events associated with terminal electron transport and energy conservation.  相似文献   

8.
The temperature optimum for photosynthesis of natural populations of blue-green algae (cyanobacteria) from Lake Mendota was determined during the period of June to November 1976. In the spring, when temperatures ranged from 0 to 20°C, there were insignificant amounts of blue-green algae in the lake (less than 1% of the biomass). During the summer and fall, when the dominant phytoplankton was blue-green algae, the optimum temperature for photosynthesis was usually between 20 and 30°C, whereas the environmental temperatures during this period ranged from 24°C in August to 12°C in November. In general, the optimum temperature for photosynthesis was higher than the environmental temperature. More importantly, significant photosynthesis also occurred at low temperature in these samples, which suggests that the low temperature alone is not responsible for the absence of blue-green algae in Lake Mendota during the spring. Temperature optima for growth and photosynthesis of laboratory cultures of the three dominant blue-green algae in Lake Mendota were determined. The responses of the two parameters to changes in temperature were similar; thus, photosynthesis appears to be a valid index of growth. However, there was little photosynthesis by laboratory cultures at low temperatures, in contrast to the natural samples. Evidence for an interaction between temperature and low light intensities in their effect on photosynthesis of natural samples is presented.  相似文献   

9.
Photooxidative Death in Blue-Green Algae   总被引:21,自引:2,他引:19       下载免费PDF全文
When incubated in the light under 100% oxygen, wild-type blue-green algae (Anacystis nidulans, Synechococcus cedrorum) die out rapidly at temperatures of 4 to 15 C, and at 35 C (or at 26 C in the case of S. cedrorum) in the absence of CO(2). Photosynthesis is impaired in these cells long before they die. Blocking of photosystem II at high temperatures in the presence of CO(2) sensitizes the algae to photooxidative death. Photooxidative death and bleaching of photosynthetic pigments are separable phenomena. Photooxidative conditions were demonstrated in Israeli fish ponds using A. nidulans as the test organism during dense summer blooms, when dissolved CO(2) is low, and in winter, when water temperatures generally drop below 15 C. This finding suggests that photooxidative death may be responsible for the sudden decomposition of blue-green blooms in summer, and may be a factor in the absence of blue-green blooms in winter.  相似文献   

10.
Blooms of blue-green algae from 51 eutrophic Scandinavian lakes were investigated during the period 1978–1984, to ascertain the occurrence of toxinogenic species. Toxicity assays were performed by intraperitoneal injection of suspensions of freeze-dried algal material in mice. Toxin-producing blue-green algae were found in 30 lakes. They belonged to 11 different species of the six genera Anabaena, Aphanizomenon, Gomphosphaeria, Microcystis, Nodularia and Oscillatoria. The presence of toxinogenic strains of blue-green algae seemed quite constant in several of the localities studied. In some lakes, more than one toxic species were found to develop simultaneously. The level of toxicity showed large variation (MLD100, 6 to > 2500 mg/kg), but clinical and pathological changes were quite uniform. The results indicate that water-blooms of toxin-producing blue-green algae, in the geographical area in question, are regionally widespread. In some localities, blooms of blue-green algae are apparently always toxic. Several aspects of the toxic blue-green algae problem are discussed.  相似文献   

11.
Lysis of Blue-Green Algae by Myxobacter   总被引:31,自引:1,他引:31       下载免费PDF全文
Enrichment from local fishponds led to the isolation of a bacterium capable of lysing many species of unicellular and filamentous blue-green algae, as well as certain bacteria. The isolate is an aflagellate, motile rod which moves in a gliding, flexuous manner; the organism is capable of digesting starch and agar, but not cellulose and gelatin. Its deoxyribonucleic acid base pair composition (per cent guanine plus cytosine approximately 70) shows a close resemblance to that of the fruiting myxobacteria. Algae in lawns on agar plates were lysed rapidly by the myxobacter, but only limited and slow lysis occurred in liquid media, and no lysis took place when liquid cultures were shaken. No diffusible lytic factors would be demonstrated. Continuous observation of the lytic process under a phase-contrast microscope suggested that a close contact between the polar tip of the myxobacter and the alga is necessary for lysis. The lytic action is limited to the vegetative cells of the algae, whereas heterocysts are not affected. The gas vacuoles of the algal host are the only remnant visible after completion of digestion by the myxobacter.  相似文献   

12.
Nitrogen fixation (C2H2 reduction) by algae in flooded soil was limited by interactions within the algal community. Nitrogen fixation by either indigenous algae or Tolypothrix tenuis was reduced severalfold by a dense suspension of the green alga Nephrocytium sp. Similarly, interactions between the nitrogen-fixing alga (cyanobacterium) Aulosira 68 and natural densities of indigenous algae limited nitrogen-fixing activity in one of two soils examined. This was demonstrated by developing a variant of Aulosira 68 that was resistant to the herbicide simetryne at concentrations that prevented development of indigenous algae. More nitrogen was fixed by the resistant variant in flooded soil containing herbicide than was fixed in herbicide-free soil by either the indigenous algae or indigenous algae plus the parent strain of Aulosira. Interference from indigenous algae may hamper the development of nitrogen-fixing algae introduced into rice fields in attempts to increase biological nitrogen fixation.  相似文献   

13.
Concentrations of deoxyadenosine which have little effect on net ribonucleic acid (RNA) synthesis or on increase in cell mass selectively inhibit deoxyribonucleic acid (DNA) synthesis in Agmenellum quadruplicatum. Exogenously supplied deoxyadenosine, at concentrations above 10 mug/ml, stimulates DNA degradation. These results are correlated with a rapid loss in viability. Over a narrow concentration range (6-15 mug/ml), deoxyadenosine impairs the division process and induces the formation of elongated cells. Low exogenous concentrations of deoxyadenosine are readily incorporated into both DNA and RNA, with the major portion as DNA.  相似文献   

14.
15.
Pseudomonas aeruginosa (Schroeter) Migula, a numerically significant bacterium found during N(2)-fixing blooms of the blue-green algae (cyanobacteria) Anabaena sp. in the Chowan River, North Carolina, was chemotactically attracted to amino acids when tested in a radioassay. The bacterium was labeled with P(i), and the disintegrations per minute determined by liquid scintillation counting were proportional to the number of cells accumulating in microcapillaries containing amino acids. Positive chemotaxis was observed toward all of the amino acids tested, although the degrees of response varied. Since many nitrogen-fixing blue-green algae secrete nitrogenous compounds, this attraction may be instrumental in establishing a symbiotic relationship between this bacterium and blue-green algae in freshwater.  相似文献   

16.
17.
18.
Respiratory Chain of Colorless Algae II. Cyanophyta   总被引:5,自引:2,他引:5       下载免费PDF全文
Whole cell difference spectra of the blue-green algae, Saprospira grandis, Leucothrix mucor, and Vitreoscilla sp. have one, or at the most 2, broad α-bands near 560 mμ. At −190° these bands split to give 4 peaks in the α-region for b and c-type cytochromes, but no α-band for a-type cytochromes is visible. The NADH oxidase activity of these organisms was shown to be associated with particulate fractions of cell homogenates. The response of this activity to inhibitors differed from the responses of the NADH oxidase activities of particulate preparations from the green algae and higher plants to the same inhibitors, but is more typical of certain bacteria. No cytochrome oxidase activity was present in these preparations. The respiration of Saprospira and Vitreoscilla can be light-reversibly inhibited by CO, and all 3 organisms have a CO-binding pigment whose CO complex absorbs near 570, 535, and 417 mμ. The action spectrum for the light reversal of CO-inhibited Vitreoscilla respiration shows maxima at 568, 534, and 416 mμ. The results suggest that the terminal oxidase in these blue-greens is an o-type cytochrome.  相似文献   

19.
The morphology of Safferman's virus of blue-green algae (phycovirus LPP-1) has been studied by electron microscopy and physicochemical methods. The virion has a short (100 to 200 A long, 150 A in diameter) forked tail, with an outer sheath, an inner core, and a capital attached to one of the vertices of a polyhedral head. The head capsid edge-to-edge distance is 600 A, based upon internal calibration of the magnification in electron micrographs by use of the line-line spacing of catalase crystals. Measurements of absorbancy and infectivity, and electron microscopy across the band of virus after zone centrifugation on a sucrose gradient, indicated that infectivity was correlated with the short-tailed particles described. The viral deoxyribonucleic acid (DNA) is linear, with a contour length of 13.2 +/- 0.5 mu, measured by the Kleinschmidt method. Its sedimentation coefficient, S(0) (20, w), is 33.4 +/- 0.7 S. These values are consistent with a molecular weight of 27 x 10(6) for the viral DNA. Based upon buoyant density in CsCl and thermal denaturation, the guanine-cytosine content of the DNA is 53%. The viral DNA was used as template for in vitro ribonucleic acid (RNA) synthesis by Escherichia coli RNA polymerase. This RNA annealed to 18% of the sequences in the viral DNA, 0.5% of the sequences in bacteriophage T7 DNA, and 0.25% of the sequences in Plectonema boryanum DNA, at saturating levels of RNA in the Hall-Nygaard hybridization assay. The lack of homology with T7 DNA is of interest because the two viruses are very similar morphologically. The lack of homology with host DNA suggests that this algal virus is a poor candidate for transduction.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号