首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The development and merozoite production of Sarcocystis falcatula and 2 isolates (SN6 and SN2) of Sarcocystis neurona were studied in various cultured cell lines inoculated with culture-derived merozoites. All 3 parasites underwent multiple cycles of schizogony in VERO cells, bovine monocytes (M617 cells), and bovine pulmonary artery endothelial cells (CPA). Sarcocystis neurona strains SN6 and SN2 formed schizonts in rat myoblasts (L6) but not in quail myoblasts (QM7); S. falcatula formed schizonts in QM7 cells but not in L6 cells. Merozoites did not develop to sarcocysts in the myoblast cells lines. During a 47-day culture period in VERO cells, SN6 produced substantially more merozoites than did SN2 or S. falcatula. M617 cells produced substantially more merozoites of SN6 than did VERO or CPA cells. During a 17-day culture period of SN6, M617 cells produced mean totals of 4.7 x 10(8) merozoites, VERO cells produced 1.9 x 10(8) merozoites, and CPA cells produced 5.9 x 10(7) merozoites. At 4-12 days after inoculation of cultured cells with SN6, M617 cells cultured in the presence of 10% fetal bovine serum (FBS) produced a mean merozoite total of 5.1 x 10(8) compared to 3.6 x 10(8) for culture medium containing 1% FBS.  相似文献   

2.
Schizonts of Sarcocystis neurona were identified microscopically in hematoxylin-eosin-stained spinal cord sections from 2 native Panamanian horses that exhibited clinical signs of equine protozoal myelitis (EPM). Spinal cord homogenate from a third Panamanian horse with EPM was inoculated onto monolayers of cultured bovine monocytes (M617). Intracytoplasmic schizonts containing merozoites arranged in rosette forms surrounding a central residual body first were observed 13 wk postinoculation. Parasites divided by endopolygeny and lacked rhoptries. Schizonts from each horse reacted with Sarcocystis cruzi antiserum in an immunohistochemical test.  相似文献   

3.
The ultrastructural characterisitics of four types of Toxoplasma gondii schizonts (types B, C, D and E) and their merozoites, microgamonts and macrogamonts were compared in cats killed at days 1, 2, 4 and 6 after feeding tissues cysts from the brains of mice. Schizonts, merozoites and gamonts contained most of the ultrastructural features characteristic of the phylum Apicomplexa. All four types of schizonts developed within enterocytes or intraepithelial lymphocytes. Occasionally, type B and C schizonts developed within enterocytes that were displaced beneath the epithelium into the lamina propria. Type D and E schizonts and gamonts developed exclusively in the epithelium. Tachyzoites occurred exclusively within the lamina propria. Type B schizonts formed merozoites by endodyogeny, whereas types C to E developed by endopolygeny. The parasitophorous vacuoles surrounding type B and C schizonts consisted of a single membrane, whereas those surrounding types D and E schizonts were comprised of two to four electron-dense membranes. The parasitophorous vacuole of type B schizonts had an extensive tubulovesicular membrane network (TMN); the TMN was reduced or absent in type C schizonts and completely absent in types D and E schizonts and gamonts. Type B merozoites were ultrastructurally similar to tachyzoites, except that they were slightly larger. Type C merozoites exhibited a positive periodic acid-Schiff reaction by light microscopy and ultrastructurally contained amylopectin granules. Rhoptries were labyrinthine in type B merozoites but were electron-dense in types C-E. The development of microgamonts, macrogamont and oocysts is also described.  相似文献   

4.
Two generations of pre-erythrocytic schizogony occurred in skeletal and cardiac muscle of domestic turkeys infected with sporozoites of Haemoproteus meleagridis. First generation schizonts reached maturity approximately five days post-inoculation (DPI) and developed in capillary endothelial cells and myofibroblasts. The schizonts ranged from 12 to 20 microns in diameter and produced long (5-6 microns), slender merozoites. Early second generation schizonts were first detected in capillary endothelial cells between 5 and 8 DPI. They were cylindrical and ranged in size from 5 to 8 microns in diameter and up to 28 microns in length. Second generation schizonts which reached maturity by 17 DPI were surrounded by a thick, hyaline wall and were packed with numerous spherical merozoites less than 1 micron in diameter. Mature megaloschizonts were fusiform, ranged from 30 to 113 microns in diameter, and extended as much as 465 microns along the long axis of muscle fibers. Merozoites developed as buds from cytomeres that formed between 8 and 14 DPI. Infected turkeys developed a moderate to severe myositis within 5 DPI and were lame in one or both legs. The myositis was associated with the necrosis of scattered groups of muscle fibers. Muscle fibers surrounding mature megaloschizonts were swollen and hyaline. Megaloschizonts were surrounded occasionally by fibroblasts and infiltrates of mononuclear cells. The morphology and site of development of mature megaloschizonts of Haemoproteus meleagridis are contrasted with those of other avian haemosporidians.  相似文献   

5.
ABSTRACT. Two generations of pre-erythrocytic schizogony occurred in skeletal and cardiac muscle of domestic turkeys infected with sporozoites of Haemoproteus meleagridis. First generation schizonts reached maturity approximately five days post-inoculation (DPI) and developed in capillary endothelial cells and myofibroblasts. The schizonts ranged from 12 to 20 μm in diameter and produced long (5–6 μm), slender merozoites. Early second generation schizonts were first detected in capillary endothelial cells between 5 and 8 DPI. They were cylindrical and ranged in size from 5 to 8 μm in diameter and up to 28 μm in length. Second generation schizonts which reached maturity by 17 DPI were surrounded by a thick, hyaline wall and were packed with numerous spherical merozoites less than 1 μm in diameter. Mature megaloschizonts were fusiform, ranged from 30 to 113 μm in diameter, and extended as much as 465 μm along the long axis of muscle fibers. Merozoites developed as buds from cytomeres that formed between 8 and 14 DPI. Infected turkeys developed a moderate to severe myositis within 5 DPI and were lame in one or both legs. The myositis was associated with the necrosis of scattered groups of muscle fibers. Muscle fibers surrounding mature megaloschizonts were swollen and hyaline. Megaloschizonts were surrounded occasionally by fibroblasts and infiltrates of mononuclear cells. The morphology and site of development of mature megaloschizonts of Haemoproteus meleagridis are contrasted with those of other avian haemosporidians.  相似文献   

6.
SYNOPSIS. Monolayer cell line cultures of ovine trachea, thyroid, thymus, and kidney cells, as well as an established cell line (Madin-Darby) of bovine kidney cells, were inoculated with sporozoites of Eimeria ninakohlyakimovae and observed for a maximum of 24 days. Sporozoites were seen penetrating cells within 5 minutes after inoculation, as well as 2 and 3 days after inoculation, and leaving cells 3 days after inoculation. Transformation from sporozoites to trophozoites occurred by a widening or by a lateral outpocketing of the sporozoite body. Trophozoites and schizonts were first seen 3 days after inoculation in all ovine cell types. Large numbers of immature schizonts were observed, but only an estimated 0.4–4.3% of these became mature in the different kinds of cells. Usually, mature schizonts were first seen 10–11 days after inoculation in the ovine cells, but they sometimes occurred as early as 8 days. More mature schizonts were seen in the ovine kidney and trachea cells than in the others; the smallest number occurred in the bovine cells. The nucleoli of cells harboring large schizonts in each type of culture were enlarged and the chromatin clumps normally seen in the nuclei of non-infected cells were not visible. The cytoplasm of some infected cells was vacuolated. The formation of merozoites occurred by a budding process from blastophores, from the surface of schizonts, and/or from infoldings and invaginations of this surface. Merozoites were observed leaving host cells, but were not seen penetrating new cells. Intracellular first-generation merozoites were observed 13 and 15 days after inoculation in lamb trachea and kidney cells, respectively. No evidence of further development of such merozoites was found.  相似文献   

7.
ABSTRACT. First and second generation schizogony of Leucocytozoon caulleryi occurred in chickens infected with sporozoites. First generation schizogony was studied by light and electron microscopy. First-generation schizonts were first detected in capillary endothelial cells in the spleen, lung, liver, and bursa of Fabricius between 3 and 6 d post-sporozoite inoculation (DPI). The schizonts ranged from 15 to 65 μm in diameter and were surrounded by a thin pellicle. Early schizonts contained numerous round or oval nuclei, endoplasmic reticulum, and mitochondria. The schizonts reached maturity 5 DPI and produced first-generation merozoites which were released into the peripheral bloodstream. The merozoites. which were infective to chickens, measured 7.1 μm in length. They were slender and had a large nucleus, a mitochondrion, and an apical complex consisting of three polar rings, rhoptries, numerous micronemes. The morphology of first-generation merozoites was different from that of second-generation merozoites.  相似文献   

8.
SYNOPSIS. A pure strain of Isospora felis derived from a single oocyst was used to study the endogenous cycle. One and a half to two-month-old laboratory-reared, coccidia-free kittens were used thruout the study. The endogenous stages occurred in the epithelial cells of the distal parts of the villi in the ileum and occasionally duodenum and jejunum. All stages lay above the host cell nucleus. There were 3 asexual generations. The 1st generation schizonts were 11–30 by 10–23 μ when mature and contained 16–17 banana-shaped merozoites 11–15 by 3–5 μ. They became mature in 96 or sometimes in 120 hours. The 1st generation merozoites entered new host cells, rounded up and formed 2nd generation schizonts. These formed within themselves 2–10 or more spindle-shaped bodies resembling 1st generation merozoites in shape and size. These were 2nd generation merozoites. They were uninucleate 120 hours after inoculation, but by 144 hours they became larger, multinucleate and some lost their elongate shape and became ovoid. They were then 3rd generation schizonts. They were 12–16 by 4–5 μ. Each formed up to 6 or more banana-shaped merozoites 6–8 by 1–2 μ. The 3rd generation schizonts and merozoites developed within the same host cell and parasitophorous vacuole as the 2nd generation schizonts and merozoites. Mature schizonts containing only 3rd generation merozoites appeared 144 hours after inoculation, were most abundant 168 hours after inoculation, and might be present as late as 216 hours after inoculation. They were 14–36 by 13–22 μ and contained 36 to more than 70 merozoites. The 3rd generation merozoites entered the sexual cycle. The mature microgametocytes were 24–72 by 18–32 μ and contained a central residuum and a large number of microgametes 5–7 by 0.8 μ with 2 posteriorly-directed flagella. The mature macrogametes were 16–22 by 8–13 μ. Gametogony occurred 144–216 hours after inoculation. The prepatent period was 168–192 hours and the patent period 10–11 days. Peak oocyst production occurred on the 6th day of the patent period.  相似文献   

9.
SYNOPSIS. Developing 2nd- and 3rd-generation schizonts of Eimeria tenella were found in the ceca of chicks infected orally with sporulated oocysts. Several free 2nd-generation schizonts, which varied in diameter from 11 to 21.6 μm, were found on the epithelial surface of the cecum. Some schizonts appeared to have lost merozoites. Other schizonts were intact, one of which was surrounded by an unbroken membrane that followed the contours of the merozoites. Third-generation schizonts, much smaller than 2nd-generation schizonts and with fewer merozoites, were found only on cut or fractured surfaces of the cecal tissue. Third-generation merozoites appeared shorter and thicker than those of the 2nd-generation and were attached to the schizont residuum. A form with conical protuberances and another with 4 triangular segments were found; they were believed to be developing stages 3rd-generation schizonts.  相似文献   

10.
The asexual development of Eimeria contorta from sporozoites to first-generation merozoites in tissue culture was investigated with the electron microscope. Sporozoites with a three-layered pellicle, 26 subpellicular microtubules, a conoid, 4-7 rhoptries, and an abundance of micronemes actively entered host cells and showed direct contact to the host cell's cytoplasm. Shortly after penetration, small vacuoles surrounding the parasite merged into a parasitophorous vacuole. Inside this vacuole, sporozoites assumed a definite U-shape before transformation into schizonts took place. This process was characterised by the occurrence of subpellicular microtubules exclusively in the anterior half of the sporozoite, by a degeneration of the 2 inner pellicular membranes, by an outpocketing of the parasite's surface, and by the arrangement of microtubules in clusters. About 25 merozoites were formed at the surface of mature schizonts, to which they remained attached at their posterior pole. A polar ring was present at that area. Anterior and posterior refractile bodies were conspicuous in merozoites and showed close association with mitochondria. The significance of a fibrillar substructure in rhoptries and micronemes is discussed, and special attention is drawn to the pathway of nutrient transport from host cell mitochondria and dictyosomes through intravacuolar folds, parasitophorous vacuole and crescent body into the parasite's food vacuoles.  相似文献   

11.
ABSTRACT The schizogonic development of Leucocytozoon smithi in the liver of experimentally infected turkey poults was examined by electron microscopy. Following intraperitoneal injection, sporozoites migrated to the liver and entered hepatic cells to become intracellular trophozoites. Three to four days post inoculation (PI), trophozoites underwent asexual multiple fission known as merogony or schizogony. Two generations of schizonts were observed. The primary or first generation schizonts, abundant on day 4 PI, appeared as interconnected cytoplasmic masses (pseudocytomeres). Each pseudocytomere was enclosed by a membranous vacuole and contained varying numbers of nuclei. As nuclear division and growth of the schizonts continued, larger discrete cytoplasmic masses or cytomeres were formed with rhoptries and multiple nuclei in various stages of division. Synchronous multiple cytoplasmic cleavage of the schizont resulted in the formation of numerous uninucleate merozoites. Second generation schizonts, which developed from hepatic merozoites released from primary schizonts, were abundant in hepatocytes on day 6 PI. Although tissue samples from liver, lung, spleen, kidney, intestine, brain, blood vessels and lymph nodes were examined, schizogonous forms were observed in liver only. No megaloschizonts were detected in any host tissue examined. Schizogonic development was completed by day 7 PI as merozoites developed into gametocytes within mononuclear phagocytes.  相似文献   

12.
The schizogonic development of Leucocytozoon smithi in the liver of experimentally infected turkey poults was examined by electron microscopy. Following intraperitoneal injection, sporozoites migrated to the liver and entered hepatic cells to become intracellular trophozoites. Three to four days post inoculation (PI), trophozoites underwent asexual multiple fission known as merogony or schizogony. Two generations of schizonts were observed. The primary or first generation schizonts, abundant on day 4 PI, appeared as interconnected cytoplasmic masses (pseudocytomeres). Each pseudocytomere was enclosed by a membranous vacuole and contained varying numbers of nuclei. As nuclear division and growth of the schizonts continued, larger discrete cytoplasmic masses or cytomeres were formed with rhoptries and multiple nuclei in various stages of division. Synchronous multiple cytoplasmic cleavage of the schizont resulted in the formation of numerous uninucleate merozoites. Second generation schizonts, which developed from hepatic merozoites released from primary schizonts, were abundant in hepatocytes on day 6 PI. Although tissue samples from liver, lung, spleen, kidney, intestine, brain, blood vessels and lymph nodes were examined, schizogonous forms were observed in liver only. No megaloschizonts were detected in any host tissue examined. Schizogonic development was completed by day 7 PI as merozoites developed into gametocytes within mononuclear phagocytes.  相似文献   

13.
SYNOPSIS. Monolayer primary cultures of cells from bovine embryonic intestine (BEInt), kidney (BEK), spleen (BES), and thyroid (BETy) and cell line cultures of embryonic bovine trachea (EBTr) and synovium (BESy) as well as established cell line cultures of bovine kidney (Madin-Darby, MDBK), human intestine (Int 407) and Syrian hamster kidney (BHK) were inoculated with freshly excysted sporozoites of Eimeria alabamensis and observed for 4–5 days. Sporozoites penetrated all cell types; during the 1st 24 hr, intracellular sporozoites, trophozoites and binucleate schizonts were seen in all cell cultures. Mature schizonts were more numerous in BES and MDBK cells than in the others. Large schizonts, 14.2 (11–18.5) by 10.2 μ (8.5–11), with 6–14 short, stubby merozoites (each with 2 refractile bodies) occurred at 2 and 3 days in all cells except BESy, Int 407, and BHK. Small schizonts, 9.7 (5.5–13) by 6 μ (5–8.5), with 6–10 long, slender merozoites (each with 2 refractile bodies) were found 3 days after inoculation in all cell types. At 4 days, some intracytoplasmic merozoites and a few intranuclear 2nd generation trophozoites were found. After 4 days post-inoculation, intracellular parasites were rarely seen and these were apparently degenerate. Development within the host cell nucleus, the normal site of development in the host animal, was observed infrequently in cell cultures. Intranuclear sporozoites, found no earlier than 2 days after inoculation, developed similarly to those in the cytoplasm, and small intranuclear schizonts with 6–10 merozoites (each with 2 refractile bodies) occurred after 3 days in culture.  相似文献   

14.
The morphology and behavior of living exoerythrocytic stages of Plasmodium gallinaceum and P. fallax were studied by the use of tissue cultures, phase contrast microscopy, and time-lapse cinephotomicrography. The morphology of exoerythrocytic stages of these two species was essentially that previously observed in fixed, stained material, with the following exceptions: (1) the presence of a filament on one end of the merozoite, (2) the absence of clefts in the cytoplasm of the large schizonts, and (3) the absence of a vacuole-like space around the parasite. The following behavior was observed either directly or in time-lapse sequences: (1) emergence of merozoites from mature schizonts, (2) progressive motility of free merozoites, (3) entry of merozoites, both actively and passively, into host cells, (4) nuclear division in the parasite, (5) the various stages of schizogony, including final production of merozoites, (6) massive infection of host cells, and (7) phagocytosis of merozoites and attempted phagocytosis of mature schizonts by macrophages. Exoerythrocytic stages of P. fallax differed from those of P. gallinaceum in that the merozoites of the former were (1) somewhat more curved in shape and (2) present in fewer numbers in mature schizonts. The use of tissue culture, phase contrast microscopy, and time-lapse cinephotomicrography promises to solve many of the remaining problems concerning exoerythrocytic stages of malarial parasites and their interrelationships with host cells.  相似文献   

15.
Equine protozoal myeloencephalitis (EPM) was diagnosed in 10 horses. By electron microscopy, schizonts were found in intact host cells of the spinal cords or, more frequently, free in the extracellular spaces. Developmental stages of schizonts differed morphologically, and the late stage of schizogony was characterized by endopolygeny. These findings permitted tentative identification of the protozoon as a Sarcocystis sp. Free merozoites were present in the extracellular spaces or in cells of the spinal cord. Pericytes of capillaries were most frequently parasitized by merozoites were present in the extracellular spaces or in cells of te spinal cord. Pericytes of capillaries were most frequently parasitized by merozoites, but the cytoplasm of neurons, macrophages, intravascular and tissue neutrophils, and axons of myelinated nerve fibers also contained these organisms. The presence of parasites in the cytoplasm of tissue and circulating neutrophils suggest that this putative Sarcocystis sp. may have a hematogenous phase of infection.  相似文献   

16.
在体外培养的牛外周血白细胞中,环形泰勒焦虫裂殖子与裂殖体寄生于宿主细胞的细胞质中,并且随着宿主细胞的分裂而分到两个子细胞中。焦虫染色质粒的分裂方式为二分裂,随着焦虫颗粒的不断增殖,逐渐发育为成熟的裂殖体。体外培养感染焦虫的牛白细胞可通过伪足与细胞裂解两种途径向培养液中释放焦虫颗粒。释放到培养液中的焦虫颗粒对体外培养的健康牛外周血白细胞具有感染能力,感染细胞能在体外连续传代培养。  相似文献   

17.
Gametocytogenesis of the malaria parasite Plasmodium falciparum was studied in monolayers of erythrocytes attached to tissue culture dishes. Merozoites produced by single schizonts in erythrocytes overlaying the monolayer infected the attached erythrocytes and produced clusters of progeny. Parasites in these readily indentifiable clusters then underwent either asexual growth or sexual differentiation. The progeny of most schizonts yielded no gametocytes. However, the progeny of those schizonts that did yield gametocytes showed a marked tendency to produce multiple gametocytes. Gametocytogenesis, therefore, was not random. Instead, the progeny of certain schizonts were committed to produce gametes. However, even those clusters containing several gametocytes also contained asexual forms. Therefore, not all merozoites of a single schizont were committed to gametocytogenesis. In those cells infected with two or more merozoites the formation of a gametocyte was usually associated with a block in the further development of other parasites.  相似文献   

18.
SYNOPSIS. Cell lines or established cell lines of bovine, ovine or human origin and primary cells from whole embryos of groundsquirrels were used in a study of the in vitro development of Eimeria callospermophili and E. bilamellata from the Uinta ground squirrel, Spermophilus armatus. Monolayers in Leighton tube cultures were inoculated with sporozoites of either of these 2 species and examined with phase-contrast microscopy at various intervals. After such examination, coverslips were fixed in Schaudinn's or Zenker's fluid and variously stained. E. callospermophi sporozoites penetrated cells and underwent development to mature 1st generation schizonts in most cell types. At different times after inoculation, both species formed sporozoite-shaped schizonts, which later became spheroidal. Intracellular movements of sporo zoite-shaped schizonts of E. callospermophili were observed and such schizonts penetrated cells when freed by mechanical disintegration of the host cells. Merozoites were formed at the periphery of the schizont in both species. Mature 1st generation schizonts of E. callospermophili, with 6–14 merozoites, were first seen 15 hr after inoculation; the corresponding values for E. bilamellata were 12–27 merozoites and 4 days. Merozoites of both had anterior and posterior refractile bodies. Exposure to a trypsin-bile solution stimulated motility in merozoites of E. callospermophili. Second generation trophozoites and immature schizonts of E. callospermophili were seen in cultures of primary cells of whole ground-squirrel embryos 20–24 hr and 44–48 hr, respectively, after inoculation of sporozoites.  相似文献   

19.
Sporozoites of Sarcocystis cruzi were inoculated onto monolayer cultures of bovine pulmonary artery endothelial (CPA) cells. Sporozoites entered the cells, formed large and small multinucleate schizonts, and produced large numbers of merozoites. Continuous cultivation from the original sporozoite inoculum has been maintained for more than 1,320 days by subinoculating merozoites onto new cultures of CPA cells. During this time, the capacity to produce both types of schizonts was preserved, and schizogony was the only form of reproduction that was observed.  相似文献   

20.
To establish an in vitro culture system for the precystic phase of Sarcocystis singaporensis, we initially tested various excysting fluids for sporocysts. An excysting fluid containing 2.5% bovine taurocholate and 10% bile of the specific intermediate host, Rattus norvegicus, in RPMI medium was the most suitable resulting in excystation of 80% of the sporozoites. Subsequently, we identified brain endothelial cells and pneumonocytes of the rat to promote growth of sporozoites to schizonts. Hepatoma, fibroblastic, or myoblastic cells were not suitable for the parasite's development. First-generation schizonts were seen at days 3-10 postinoculation (PI); a distinct second peak of schizogonic development only occurred in endothelial cells at days 14-18 PI. First-generation schizonts were 26.0 (± 3.8) μm in diameter and contained 32-50 merozoites, second-generation schizonts measured 34.4 (± 10.6) μm and contained 54-72 merozoites. Merozoite yield at large-scale culture conditions (75 cm2 flasks) using pneumonocytes as host cells was relatively low. Ultrastructurally, sporozoites and merozoites were quite similar to corresponding stages of other Sarcocystis species. With regard to host cell specificity and developmental kinetics, in vitro cultivation showed close similarities to the situation in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号