首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Trinucleotide repeats associated with human disease.   总被引:16,自引:4,他引:12       下载免费PDF全文
M Mitas 《Nucleic acids research》1997,25(12):2245-2254
Triplet repeat expansion diseases (TREDs) are characterized by the coincidence of disease manifestation with amplification of d(CAG. CTG), d(CGG.CCG) or d(GAA.TTC) repeats contained within specific genes. Amplification of triplet repeats continues in offspring of affected individuals, which generally results in progressive severity of the disease and/or an earlier age of onset, phenomena clinically referred to as 'anticipation'. Recent biophysical and biochemical studies reveal that five of the six [d(CGG)n, d(CCG)n, (CAG)n, d(CTG)n and d(GAA)n] complementary sequences that are associated with human disease form stable hairpin structures. Although the triplet repeat sequences d(GAC)n and d(GTC)n also form hairpins, repeats of the double-stranded forms of these sequences are conspicuously absent from DNA sequence databases and are not anticipated to be associated with human disease. With the exception of d(GAG)n and d(GTG)n, the remaining triplet repeat sequences are unlikely to form hairpin structures at physiological salt and temperature. The details of hairpin structures containing trinucleotide repeats are summarized and discussed with respect to potential mechanisms of triplet repeat expansion and d(CGG.CCG) n methylation/demethylation.  相似文献   

3.
4.
5.
Hashem VI  Sinden RR 《Mutation research》2002,508(1-2):107-119
The number of neurodegenerative disorders associated with the expansion of DNA repeats, currently about 18, continues to increase as additional diseases caused by this novel type of mutation are identified. Typically, expanded repeats are biased toward further expansion upon intergenerational transmission, and disease symptoms show an earlier age of onset and greater severity as the length of the triplet repeat tract increases. Most diseases exhibit progressive neurological and/or muscular degeneration that can lead to total disability and death. As yet, no treatment exists for the genetic basis of any repeat disease. Given that the severity of these diseases is related to repeat tract length, reducing repeat lengths might delay the onset and reduce disease severity. Here, we test the hypothesis that the introduction of damage into DNA, which results in subsequent repair events, can lead to an increased rate of repeat deletion. Applying a sensitive genetic assay in Escherichia coli [Mut. Res. 502 (2002) 25], we demonstrate that certain DNA damaging agents, including EMS, ENU, UV light, and anticancer agents mitomycin C, cisplatin, and X-rays increase the rate of deletion of (CTG).(CAG) repeats in a length and orientation dependent fashion. In addition, oxidative damage to DNA also increases the deletion rate of repeats. These results suggest that a chemotherapeutic approach to the reduction in triplet repeat length may provide one possible rationale to slow, stop, or reverse the progression of these diseases.  相似文献   

6.
7.
8.
9.
A mounting number of inherited human disorders, including Huntington disease, myotonic dystrophy, fragile X syndrome, Friedreich ataxia and several spinocerebellar ataxias, have been associated with the expansion of unstable simple sequence DNA repeats. Despite a similar genetic basis, pathogenesis in these disorders is mediated by a variety of both loss and gain of function pathways. Thus, therapies targeted at downstream pathology are likely to be disease specific. Characteristically, disease-associated expanded alleles in these disorders are highly unstable in the germline and somatic cells, with a tendency towards further expansion. Whereas germline expansion accounts for the phenomenon of anticipation, tissue-specific, age-dependent somatic expansion may contribute towards the tissue-specificity and progressive nature of the symptoms. Thus, somatic expansion presents as a novel therapeutic target in these disorders. Suppression of somatic expansion should be therapeutically beneficial, whilst reductions in repeat length could be curative. It is well established that both cis- and trans-acting genetic modifiers play key roles in the control of repeat dynamics. Importantly, recent data have revealed that expanded CAG.CTG repeats are also sensitive to a variety of trans-acting chemical modifiers. These data provide an exciting proof of principle that drug induced suppression of somatic expansion might indeed be feasible. Moreover, as our understanding of the mechanism of expansion is refined more rational approaches to chemical intervention in the expansion pathway can be envisioned. For instance, the demonstration that expansion of CAG.CTG repeats is dependent on the Msh2, Msh3 and Pms2 genes, highlights components of the DNA mismatch repair pathway as therapeutic targets. In addition to potential therapeutic applications, the response of expanded simple repeats to genotoxic assault suggests such sequences could also have utility as bio-monitors of environmentally induced genetic damage in the soma.  相似文献   

10.
Pure autosomal dominant spastic paraplegia (SPG) is a genetically heterogeneous neurodegenerative disorder of the central nervous system clinically characterized by progressive spasticity mainly affecting the lower limbs. Three distinct loci have been mapped to chromosomes 14q (SPG3), 2p (SPG4) and 15q (SPG6). In particular, SPG4 families show striking intrafamilial variability suggestive of anticipation and evidence has been provided that CAG/CTG repeat expansions may be involved. To isolate CAG/CTG repeat containing sequences from within the SPG4 candidate region, a novel approach was developed. Fragmentation vectors were assembled allowing direct fragmentation of yeast artificial chromosomes (YACs) with a short (> or = 21 bp) CAG/CTG sequence as the target site for homologous recombination. We used the CAG/CTG YAC fragmentation vectors to isolate CAG/CTG containing sequences from four YACs spanning the SPG4 candidate region between D2S400 and D2S367. A total of four CAG/CTG containing sequences were isolated of which three were novel. However, none of the four CAG/CTG repeats showed expanded alleles in two Belgian SPG4 families. In addition, we showed that the CAG/CTG alleles detected by the repeat expansion detection (RED) method could be fully explained by two polymorphic nonpathogenic CAG/CTG repeats on chromosomes 17 and 18, respectively. Also, the RED expansions in six SPG families could not be explained by amplification of the CAG/CTG repeats at the SPG4 locus. Together, our data do not support the hypothesis of a CAG/CTG repeat expansion as the molecular mechanism underlying SPG4 pathology.  相似文献   

11.
Many diseases caused by trinucleotide expansion exhibit increased severity and decreased age of onset (genetic anticipation) in successive generations. Apparent evidence of genetic anticipation in schizophrenia has led to a search for trinucleotide repeat expansions. We have used several techniques, including Southern blot hybridization, repeat expansion detection (RED) and locus-specific PCR to search for expanded CAG/CTG repeats in 12 families from the United Kingdom and 11 from Iceland that are multiplex for schizophrenia and demonstrate anticipation. The unstable DNA theory could also explain discordance of phenotype for schizophrenia in pairs of monozygotic twins, where the affected twin has a greater number of repeats than the unaffected twin. We used these techniques to look for evidence of different CAG/CTG repeat size in 27 pairs of monozygotic twins who are either concordant or discordant for schizophrenia. We have found no evidence of an increase in CAG/CTG repeat size for affected members in the families, or for the affected twins in the MZ twin sample. Southern hybridization and RED analysis were also performed for the twin and family samples to look for evidence of expansion of GAA/TTC repeats. However, no evidence of expansion was found in either sample. Whilst these results suggest that these repeats are not involved in the etiology of schizophrenia, the techniques used for detecting repeat expansions have limits to their sensitivity. The involvement of other trinucleotide repeats or other expandable repeat sequences cannot be ruled out. Received: 8 September 1997 / Accepted: 13 March 1998  相似文献   

12.
Chi LM  Lam SL 《Nucleic acids research》2005,33(5):1604-1617
CTG triplet repeat sequences have been found to form slipped-strand structures leading to self-expansion during DNA replication. The lengthening of these repeats causes the onset of neurodegenerative diseases, such as myotonic dystrophy. In this study, electrophoretic and NMR spectroscopic studies have been carried out to investigate the length and the structural roles of CTG repeats in affecting the hairpin formation propensity. Direct NMR evidence has been successfully obtained the first time to support the presence of three types of hairpin structures in sequences containing 1–10 CTG repeats. The first type contains no intra-loop hydrogen bond and occurs when the number of repeats is less than four. The second type has a 4 nt TGCT-loop and occurs in sequences with even number of repeats. The third type contains a 3 nt CTG-loop and occurs in sequences with odd number of repeats. Although stabilizing interactions have been identified between CTG repeats in both the second and third types of hairpins, the structural differences observed account for the higher hairpin formation propensity in sequences containing even number of CTG repeats. The results of this study confirm the hairpin loop structures and explain how slippage occurs during DNA replication.  相似文献   

13.
Using synthetic DNA constructs in vitro, we find that human DNA polymerase beta effectively catalyzes CAG/CTG triplet repeat expansions by slippage initiated at nicks or 1-base gaps within short (14 triplet) repeat tracts in DNA duplexes under physiological conditions. In the same constructs, Escherichia coli DNA polymerase I Klenow Fragment exo(-) is much less effective in expanding repeats, because its much stronger strand displacement activity inhibits slippage by enabling rapid extension through two downstream repeats into flanking non-repeat sequence. Polymerase beta expansions of CAG/CTG repeats, observed over a 32-min period at rates of approximately 1 triplet added per min, reveal significant effects of break type (nick versus gap), strand composition (CTG versus CAG), and dNTP substrate concentration, on repeat expansions at strand breaks. At physiological substrate concentrations (1-10 microm of each dNTP), polymerase beta expands triplet repeats with the help of weak strand displacement limited to the two downstream triplet repeats in our constructs. Such weak strand displacement activity in DNA repair at strand breaks may enable short tracts of repeats to be converted into longer, increasingly mutable ones associated with neurological diseases.  相似文献   

14.
Triplet repeat expansion in 3 untranslated region of myotonic dystrophy protein kinase (DMPK) gene has been implicated as causative in myotonic dystrophy (DM). In cases of DM, high levels of somatic instability have been reported, in which inter-tissue repeat length differences as large as 3000 repeats have been observed. This study highlights the inter-tissue (CTG)n expansion variability at the DMPK locus. Molecular analysis of DMPK gene, encompassing the triplet repeat expansion, was carried out in 31 individuals (11 clinically identified DM patients, 20 controls). All controls showed a 2.1kb band (upto 35 CTG repeats), while four cases exhibited an expansion (>50 repeats). A novel observation was made in one case, wherein the DNA from lymphocytes showed a normal 2.1kb band while the muscle tissue DNA from the same patient was heterozygous for normal and 4.3 kb band (>700 repeats). Our results suggested that because inter-tissue variability existed in the (CTG)n repeat number at DMPK locus, an attempt should be made to evaluate affected tissue along with blood wherever possible prior to making a final diagnosis. This is important not only for diagnosis and prenatal analysis, but also while providing genetic counseling to families.  相似文献   

15.
Huntington disease (HD) is an autosomal dominant degenerative disorder caused by an expanded and unstable trinucleotide repeat (CAG)n in a gene (IT-15) on chromosome 4. HD exhibits genetic anticipation—earlier onset in successive generations within a pedigree. From a population-based clinical sample, we ascertained parent-offspring pairs with expanded alleles, to examine the intergenerational behavior of the trinucleotide repeat and its relationship to anticipation. We find that the change in repeat length with paternal transmission is significantly correlated with the change in age at onset between the father and offspring. When expanded triplet repeats of affected parents are separated by median repeat length, we find that the longer paternal and maternal repeats are both more unstable on transmission. However, unlike in paternal transmission, in which longer expanded repeats display greater net expansion than do shorter expanded repeats, in maternal transmission there is no mean change in repeat length for either longer or shorter expanded repeats. We also confirmed the inverse relationship between repeat length and age at onset, the higher frequency of juvenile-onset cases arising from paternal transmission, anticipation as a phenomenon of paternal transmission, and greater expansion of the trinucleotide repeat with paternal transmission. Stepwise multiple regression indicates that, in addition to repeat length of offspring, age at onset of affected parent and sex of affected parent contribute significantly to the variance in age at onset of the offspring. Thus, in addition to triplet repeat length, other factors, which could act as environmental factors, genetic factors, or both, contribute to age at onset. Our data establish that further expansion of paternal repeats within the affected range provides a biological basis of anticipation in HD.  相似文献   

16.
We analyzed the SCA8 CTA/CTG repeat in a large group of Japanese subjects. The frequency of large alleles (85-399 CTA/CTG repeats) was 1.9% in spinocerebellar ataxia (SCA), 0.4% in Parkinson disease, 0.3% in Alzheimer disease, and 0% in a healthy control group; the frequency was significantly higher in the group with SCA than in the control group. Homozygotes for large alleles were observed only in the group with SCA. In five patients with SCA from two families, a large SCA8 CTA/CTG repeat and a large SCA6 CAG repeat coexisted. Age at onset was correlated with SCA8 repeats rather than SCA6 repeats in these five patients. In one of these families, at least one patient showed only a large SCA8 CTA/CTG repeat allele, with no large SCA6 CAG repeat allele. We speculate that the presence of a large SCA8 CTA/CTG repeat allele influences the function of channels such as alpha(1A)-voltage-dependent calcium channel through changing or aberrant splicing, resulting in the development of cerebellar ataxia, especially in homozygous patients.  相似文献   

17.
Several human genetic diseases have been associated with the genetic instability, specifically expansion, of trinucleotide repeat sequences such as (CTG)(n).(CAG)(n). Molecular models of repeat instability imply replication slippage and the formation of loops and imperfect hairpins in single strands. Subsequently, these loops or hairpins may be recognized and processed by DNA repair systems. To evaluate the potential role of nucleotide excision repair in repeat instability, we measured the rates of repeat deletion in wild type and excision repair-deficient Escherichia coli strains (using a genetic assay for deletions). The rate of triplet repeat deletion decreased in an E. coli strain deficient in the damage recognition protein UvrA. Moreover, loops containing 23 CTG repeats were less efficiently excised from heteroduplex plasmids after their transformation into the uvrA(-) strain. As a result, an increased proportion of plasmids containing the full-length repeat were recovered after the replication of heteroduplex plasmids containing unrepaired loops. In biochemical experiments, UvrA bound to heteroduplex substrates containing repeat loops of 1, 2, or 17 CAG repeats with a K(d) of about 10-20 nm, which is an affinity about 2 orders of magnitude higher than that of UvrA bound to the control substrates containing (CTG)(n).(CAG)(n) in the linear form. These results suggest that UvrA is involved in triplet repeat instability in cells. Specifically, UvrA may bind to loops formed during replication slippage or in slipped strand DNA and initiate DNA repair events that result in repeat deletion. These results imply a more comprehensive role for UvrA, in addition to the recognition of DNA damage, in maintaining the integrity of the genome.  相似文献   

18.
The influences of double-strand breaks (DSBs) within a triplet repeat sequence on its genetic instabilities (expansions and deletions) related to hereditary neurological diseases was investigated. Plasmids containing 43 or 70 CTG.CAG repeats or 43 CGG.CCG repeats were linearized in vitro near the center of the repeats and were transformed into parental, RecA-dependent homologous recombination-deficient, or RecBC exonuclease-deficient Escherichia coli. The resulting repair process considerably increased deletion of the repeating sequence compared to the circular DNA controls. Unexpectedly, the orientation of the insert relative to the unidirectional ColE1 origin of replication affected the amount of instability generated during the repair of the DSB. When the CTG strand was the template for lagging-strand synthesis, instability was increased, most markedly in the recA- strain. Results indicated that RecA and/or RecBC might play a role in DSB repair within the triplet repeat. Altering the length, orientation, and sequence composition of the triplet repeat suggested an important role of DNA secondary structures during repair intermediates. Hence, we hypothesize that ColE1 origin-dependent replication was involved during the repair of the DSB. A model is presented to explain the mechanisms of the observed genetic instabilities.  相似文献   

19.
At least nine human genetic diseases, including myotonic dystrophy (DM) and fragile X syndrome have been associated with the expansion of CTG or CGG trinucleotide repeats within the disease loci. Little is known about the molecular mechanisms or the genetic control of the expansion of triplet repeats. Mutations in human mismatch repair genes are associated with the increased polymorphism of many microsatellites, including dinucleotide repeats. The effect of mutations in two mismatch repair genes on the size of trinucleotide repeats in the DM and FRAXA loci has been analyzed. PCR and Southern analysis of the triplet repeat regions of the DM and fragile X mental retardation (FRAXA) loci in cell lines HTC116 and LoVo, which contain mutations in both alleles of the hMLH1 and hMSH2 genes, respectively, indicated that the size of the endogenous (CTG)n and (CGG)n tracts fall within the range observed in the normal population. This suggests that mutations in hMLH1 or hMSH2 do not result in the instability of CTG or CGG tracts to the levels observed in individuals with myotonic dystrophy or fragile X syndrome. Received: 4 December 1995 / Revised: 29 January 1996, 7 March 1996  相似文献   

20.
Triplet repeat disease is a group of hereditary neurodegenerative disorders caused by expansion of trinucleotide repeats such as CAG/CTG, CGG/CCG, and GAA/TTC. Direct detection of the expansion in the patient's genome shortcuts the tedious process needed for identification of disease genes by conventional approaches. Here we describe a method to detect triplet repeat expansion from the hybridization signal intensity. Using a digoxigenin-labeled (CTG)9 probe, the hybridization intensity and number of repeats showed a good linear correlation. The technique detected expansion in genomic DNA in all cases with moderate or large expansion. Even in the case of a small expansion, this method could detect the mutant fragment. The technique has advantages over related techniques because it is more sensitive and can be applied to cases where a small repeat expansion is involved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号