首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
The Arabidopsis membrane protein ACCELERATED CELL DEATH 6 (ACD6) and the defense signal salicylic acid (SA) are part of a positive feedback loop that regulates the levels of at least 2 pathogen-associated molecular patterns (PAMP) receptors, including FLAGELLIN SENSING 2 (FLS2) and CHITIN ELICITOR RECEPTOR (LYSM domain receptor-like kinase 1, CERK1). ACD6- and SA-mediated regulation of these receptors results in potentiation of responses to FLS2 and CERK1 ligands (e.g. flg22 and chitin, respectively). ACD6, FLS2 and CERK1 are also important for callose induction in response to an SA agonist even in the absence of PAMPs. Here, we report that another receptor, EF-Tu RECEPTOR (EFR) is also part of the ACD6/SA signaling network, similar to FLS2 and CERK1.  相似文献   

4.
5.
Lacking an adaptive immune system, plants largely rely on plasma membrane‐resident pattern recognition receptors (PRRs) to sense pathogen invasion. The activation of PRRs leads to the profound immune responses that coordinately contribute to the restriction of pathogen multiplication. Protein post‐translational modifications dynamically shape the intensity and duration of the signalling pathways. In this review, we discuss the specific regulation of PRR activation and signalling by protein ubiquitination, endocytosis and degradation, with a particular focus on the bacterial flagellin receptor FLS2 (flagellin sensing 2) in Arabidopsis.  相似文献   

6.
The perception of microbes by plants involves highly conserved molecular signatures that are absent from the host and that are collectively referred to as microbe‐associated molecular patterns (MAMPs). The Arabidopsis pattern recognition receptors FLAGELLIN‐SENSING 2 (FLS2) and EF‐Tu receptor (EFR) represent genetically well studied paradigms that mediate defense against bacterial pathogens. Stimulation of these receptors through their cognate ligands, bacterial flagellin or bacterial elongation factor Tu, leads to a defense response and ultimately to increased resistance. However, little is known about the early signaling pathway of these receptors. Here, we characterize this early response in situ, using an electrophysiological approach. In line with a release of negatively charged molecules, voltage recordings of microelectrode‐impaled mesophyll cells and root hairs of Col‐0 Arabidopsis plants revealed rapid, dose‐dependent membrane potential depolarizations in response to either flg22 or elf18. Using ion‐selective microelectrodes, pronounced anion currents were recorded upon application of flg22 and elf18, indicating that the signaling cascades initiated by each of the two receptors converge on the same plasma membrane ion channels. Combined calcium imaging and electrophysiological measurements revealed that the depolarization was superimposed by an increase in cytosolic calcium that was indispensable for depolarization. NADPH oxidase mutants were still depolarized upon elicitor stimulation, suggesting a reactive oxygen species‐independent membrane potential response. Furthermore, electrical signaling in response to either flg22 or elf 18 critically depends on the activity of the FLS2‐associated receptor‐like kinase BAK1, suggesting that activation of FLS2 and EFR lead to BAK1‐dependent, calcium‐associated plasma membrane anion channel opening as an initial step in the pathogen defense pathway.  相似文献   

7.
8.
FLS2 and EFR are pattern recognition receptors in Arabidopsis thaliana perceiving the bacterial proteins flagellin and Elongation factor Tu (EF-Tu). Both receptors belong to the >200 membered protein family of Leucine-Rich Repeat Receptor Kinases (LRR-RKs) in Arabidopsis. FLS2 and EFR are engaged in the activation of a common intracellular signal output and they belong to the same subfamily of LRR-RKs, sharing structural features like the intracellular kinase domain and the ectodomain organized in LRRs. On the amino acid sequence level, however, they are only <50% identical even in their kinase domains. In our recently published paper1 we demonstrated that it is possible to create chimeric receptors of EFR and FLS2 that are fully functional in ligand binding and receptor activation. Chimeric receptors consisting of the complete EFR ectodomain and the FLS2 kinase domain proved to be sensitive to elf18, the minimal peptide required for EF-Tu recognition, similar to the native EFR. In chimeric receptors where parts of the FLS2 ectodomain were swapped into the EFR LRR-domain, the receptor function was strongly affected even in cases with only small fragments exchanged. In this addendum we want to address problems and limits but also possibilities and chances of studying receptor functions using a chimeric approach.Key words: pattern recognition receptors, chimeric receptors, MAMP, flagellin perception, FLS2, EFRIn the Arabidopsis genome exist >600 genes that are predicted to encode for receptor-like kinases (RLKs).2,3 More than 200 of them have ectodomains with LRRs. Physiological functions have been attributed only to a rather small percentage of them. Examples for known receptor-ligand pairs in A. thaliana include the well studied BRI1/Brassionlide,4,5 AtPEPR1/Pep25,6 HAESA/IDA7 or CLV1/CLV3.8 While these LRR-RKs detect endogenous ligands, other members of this family function as immunoreceptors that detect ligands indicative of ‘non-self,’ such as pathogen associated molecular patterns (PAMPs). Examples of such LRR-RKs include FLS2 (Flagellin Sensing 2) and EFR (EF-Tu Receptor) from Arabidopsis and XA21 from rice.911 The corresponding ligands have been identified as the flg22-epitope of bacterial flagellin for FLS2, the N-terminus of bacterial EF-Tu represented by the elf18 peptide for EFR, and the sulfated Avr21 peptide from Xanthomonas for XA21, respectively. LRR-ectodomains with related function in pathogen recognition occur also in so-called receptor-like proteins that lack the cytoplasmic kinase domains. Well studied examples include several Cf-receptor proteins which confer resistance against the fungus Cladosporium fulvum (Cf) in a gene-for-gene dependent manner. Thereby, different Cf-proteins function as recognition systems with specificity for factors determined by corresponding AvrCf products of the fungal pathogen.12,13Receptor activation of the well studied receptor BRI1 by its ligand brassinolide involves interaction with a further receptor kinase, BAK1 (BRI1-associated receptor kinase 1).5,14 Most interestingly, BAK1, or one of the four BAK1-related receptor kinases of the SERK protein family, also acts as a co-receptor for the ligand-dependent activation of FLS2, AtPEPR1 and EFR.1517 It seems that the co-receptor BAK1 plays an important role in activation of receptor kinases, serving different intracellular signaling pathways and output programs.18Up to now, little is known about the molecular details of ligand binding by the ectodomain in the apoplast and how this process leads to activation of the output signaling by the kinase moiety in the cytoplasm. The interaction with the co-receptor BAK1 suggests an activation process involving a ligand-induced intramolecular conformational change of the LRR-RK that then allows heterodimerization with the co-receptor BAK1. An initial task in elucidation of this activation process consists in defining the exact sites in the ectodomains of the receptors that interact with their corresponding ligands. So far, the clearest results for mapping ligand binding sites on LRR-receptor proteins were obtained with directed point mutations within the LRR domains as performed with the tomato receptor-like protein Cf-9,19,20 and the Arabidopsis FLS2. There, a series of directed point mutations helped to map the LRRs 9–15 as a subdomain essential for interaction with the ligand flg22.21 Another interesting and promising approach consists in swaps of receptor sub-domains or exchanges of LRRs. In a remarkable, pioneering experiment this approach was used to produce chimeric receptors with the ectodomain of the brassinosteroid receptor BRI1 from Arabidopsis and the kinase domain of the immunoreceptor XA21 from rice.22 This chimera was reported to recognize the “developmental signal” brassinolide but to trigger characteristic cellular defense responses. In a recent publication23 a domain swap between the ectodomain of the Wall Associated Kinase 1 (WAK1) and EFR was used to gain evidence for a function of the WAK1 ectodomain as a pectin receptor. Chimeric forms of the Cf receptor-like protein were used to identify subdomains carrying the specificity for the corresponding effectors from the C. fulvum pathogens.24 However, as a limitation of this analysis, for none of these tomato resistance proteins a direct interaction with the corresponding effector proteins of the pathogen could be demonstrated so far.25In our work, recently published in the Journal of Biochemistry,1 we used the Arabidopsis thaliana receptors FLS2 and EFR to generate receptor chimeras. The main goal was to study the elf18 binding site in the EFR LRR-domain. In initial attempts we used EFR-constructs lacking some of the LRRs to narrow down the interaction site on the ectodomain. However, all of these truncated ectodomain versions lacking the transmembrane domain or more turned out to be unable in binding elf18 and triggering responses. In a second approach, we used the replacement of receptor parts with fragments from the structurally related receptor AtFLS2. These chimeras were tested for proper expression, localization, functionality in several plant defence related assays and affinity for the ligand elf18 in binding assays. The chimera with the complete EFR ectodomain swapped to the Kinase of FLS2 was fully functional as EF-Tu receptor. Since both receptors are known to trigger the same set of defense responses this might be not unexpected. Nevertheless, it is noteworthy that the two receptors show ∼45% sequence identity in their kinase domain, a degree of identity also shared with the kinase domains of receptors involved in other output programs, like BRI1. The 21 LRRs of EFR are sufficient for specifying full affinity for the elf18 as a ligand (
ReceptorEthylene responseOxidative burstFRK-promoter inductionBinding affinitiy for elf18
EFR≥0.01 nM≥0.01 nM≥0.001 nMIC50 ∼10 nM
E-oJM/F≥0.01 nM≥0.01 nM≥0.001 nMIC50 ∼10 nM
E-21/F≥10 nM≥10 nM≥0.1 nMIC50 ∼10 nM
E-19/Fno responseno responseno responseno binding
F-6/Eno response≥1,000 nMno responseIC50 ∼100 nM
Open in a separate windowValues indicate the minimal concentrations of elf18 peptide required to trigger significant induction of ethylene synthesis and oxidative burst in leaves of transiently transformed N. benthamiana or induction of an FRK-promoter construct in A. thaliana protoplasts. The right column shows the relative affinity of the different receptors for the elf18 ligand in competition binding assays; the IC50 indicates the concentration of unlabeled elf18 required to compete 50% of radioligand binding.Although the “fine mapping” of a ligand binding site within a receptor ectodomain seems to be difficult and still needs some optimization, we could show that the approach of “receptor chimearization” works well in principal. The exchange of ectodomains which define specificity for different input signals (elf18 or flg22) resulting in controlling the same output signal has been demonstrated successfully. Altogether, reprogramming in- and output of receptor kinases, as first described by He et al.22 might be an important tool to investigate and to manipulate plant defence and development.  相似文献   

9.
Interaction of Hepatitis C virus proteins with pattern recognition receptors     
Imran M  Waheed Y  Manzoor S  Bilal M  Ashraf W  Ali M  Ashraf M 《Virology journal》2012,9(1):126
  相似文献   

10.
NPY signaling through Y1 receptors modulates thalamic oscillations     
Brill J  Kwakye G  Huguenard JR 《Peptides》2007,28(2):250-256
Neuropeptide Y is the ligand of a family of G-protein coupled receptors (Y(1) to Y(6)). In the thalamus, exogenous and endogenously released NPY can shorten the duration of thalamic oscillations in brain slices from P13 to P15 rats, an in vitro model of absence seizures. Here, we examine which Y receptors are involved in this modulation. Application of the Y(1) receptor agonist Leu(31)Pro(34)NPY caused a reversible reduction in the duration of thalamic oscillations (-26.6+/-7.8%), while the Y(2) receptor agonist peptideYY((3-36)) and the Y(5) receptor agonist BWX-46 did not exert a significant effect. No Y receptor agonist affected oscillation period. Application of antagonists of Y(1), Y(2) and Y(5) receptors (BIBP3226, BIIE0246 and L152,806, respectively) produced results consistent with those obtained from agonists. BIBP3226 caused a reversible disinhibition, an effect that increases oscillation duration (18.2+/-9.7%) while BIIE0246 and L152,806 had no significant effect. Expression of NPY is limited to neurons in the reticular thalamic nucleus (nRt), but Y(1) receptors are expressed in both nRt and adjacent thalamic relay nuclei. Thus, intra-nRt or nRt to relay nucleus NPY release could cause Y(1) receptor mediated inhibition of thalamic oscillations.  相似文献   

11.
Physiological role of the functions of pattern recognition receptors in immunology     
K. A. Lebedev 《Human physiology》2007,33(5):632-636
Data accumulated to date, including published data obtained by other researchers, were used to demonstrate that the immune system differentiates between the normal resident microflora of the body and transient microflora using pattern recognition receptors (PRRs) on the surface of cells. The body forms a regional tolerance to the former microflora, and the latter one is inhibited by the immune system and, upon entering the body, eliminated. This function of PRRs in lower organisms is exercised by the innate immunity; in higher organisms, the adaptive immunity is also involved. It is important that, in humans and other mammals, this function of control also extends to the central tolerance to clone elimination, determining the absence of an immune response to the body’s own tissues.  相似文献   

12.
Peptide mapping of bacterial fimbrial epitopes interacting with pattern recognition receptors     
Hajishengallis G  Ratti P  Harokopakis E 《The Journal of biological chemistry》2005,280(47):38902-38913
The fimbriae of the oral pathogen Porphyromonas gingivalis induce Toll-like receptor 2 (TLR2)-dependent macrophage activation upon their recognition by CD14 and the beta(2) integrin CD11b/CD18. To map functional epitopes of fimbriae that interact with these pattern recognition receptors (PRRs), we examined 20 synthetic peptides covering the entire length of the 41-kDa fimbrillin subunit. Using direct or competitive inhibition assays for receptor binding or cell activation, the CD14 binding activity of fimbriae was localized to residues 69-90 and was essential for TLR2-dependent cytokine induction. The CD11b/CD18 binding activity of fimbriae was localized to two neighboring epitopes defined by residues 166-185 and 206-225. Unlike epitope 69-90 that constitutively bound CD14, the CD11b/CD18 binding activity of epitopes 166-185 and 206-225 was inducible by integrin activators. The CD11b/CD18 binding activity played a contributory role to TLR2-dependent induction of tumor necrosis factor-alpha by fimbriae but was involved in specific down-regulation of interleukin-12. Cell activation by a combination of fimbrillin peptides corresponding to the CD14 and CD11b/CD18 binding activities resulted in higher tumor necrosis factor-alpha responses than would be expected from a simply additive effect, attributable to CD14-dependent inside-out signaling leading to enhanced binding interactions with CD11b/CD18. These data suggest that P. gingivalis fimbriae display a modular structure that interacts through discrete epitopes and in a regulated mode with distinct PRRs, which in turn differentially modulate the state of cell activation. Elucidation of pathogen interactions with PRRs at the molecular level may glean insight into host defense mechanisms as well as into microbial strategies that subvert innate immunity.  相似文献   

13.
Physiological role of the functions of pattern recognition receptors in immunology     
Lebedev KA 《Fiziologiia cheloveka》2007,33(5):133-137
  相似文献   

14.
New insights into TRP channels: Interaction with pattern recognition receptors     
Huirong Han  Fan Yi 《Channels (Austin, Tex.)》2014,8(1):13-19
An increasing number of studies have implicated that the activation of innate immune system and inflammatory mechanisms are of importance in the pathogenesis of numerous diseases. The innate immune system is present in almost all multicellular organisms in response to pathogens or tissue injury, which is performed via germ-line encoded pattern-recognition receptors (PRRs) to recognize pathogen-associated molecular patterns (PAMPs) or dangers-associated molecular patterns (DAMPs). Intracellular pathways linking immune and inflammatory response to ion channel expression and function have been recently identified. Among ion channels, transient receptor potential (TRP) channels are a major family of non-selective cation-permeable channels that function as polymodal cellular sensors involved in many physiological and pathological processes. In this review, we summarize current knowledge about classifications, functions, and interactions of TRP channels and PRRs, which may provide new insights into their roles in the pathogenesis of inflammatory diseases.  相似文献   

15.
Expansion of pathogen recognition specificity in plants using pattern recognition receptors and artificially designed decoys     
《中国科学:生命科学英文版》2017,(8)
Pathogen/microbe-associated molecular patterns(PAMPs/MAMPs) are recognized by plant pattern recognition receptors(PRRs)localized on the cell surface to activate immune responses.This PAMP-triggered immunity(PTI) confers resistance to a broad range of pathogenic microbes and,therefore,has a great potential for genetically engineering broad-spectrum resistance by transferring PRRs across plant families.Pathogenic effectors secreted by phytopathogens often directly target and inhibit key components of PTI signaling pathways via diverse biochemical mechanisms.In some cases,plants have evolved to produce decoy proteins that mimic the direct virulence target,which senses the biochemical activities of pathogenic effectors.This kind of perception traps the effectors of erroneous targeting and results in the activation of effector-triggered immunity(ETI) instead of suppressing PTI.This mechanism suggests that artificially designed decoy proteins could be used to generate new recognition specificities in a particular plant.In this review,we summarize recent advances in research investigating PAMP recognition by PRRs and virulence effector surveillance by decoy proteins.Successful expansion of recognition specificities,conferred by the transgenic expression of EF-Tu receptor(EFR) and AvrPphB susceptible 1(PBS1) decoys,has highlighted the considerable potential of PRRs and artificially designed decoys to expand plant resistance spectra and the need to further identify novel PRRs and decoys.  相似文献   

16.
Transcriptional modulation of pattern recognition receptors in acute colitis in mice     
Bin Zheng  Mary E. Morgan  Hendrik J.G. van de Kant  Johan Garssen  Gert Folkerts  Aletta D. Kraneveld 《生物化学与生物物理学报:疾病的分子基础》2013,1832(12):2162-2172
  相似文献   

17.
Plant and animal pathogen recognition receptors signal through non-RD kinases     
Dardick C  Ronald P 《PLoS pathogens》2006,2(1):e2
Plants and animals mediate early steps of the innate immune response through pathogen recognition receptors (PRRs). PRRs commonly associate with or contain members of a monophyletic group of kinases called the interleukin-1 receptor-associated kinase (IRAK) family that include Drosophila Pelle, human IRAKs, rice XA21 and Arabidopsis FLS2. In mammals, PRRs can also associate with members of the receptor-interacting protein (RIP) kinase family, distant relatives to the IRAK family. Some IRAK and RIP family kinases fall into a small functional class of kinases termed non-RD, many of which do not autophosphorylate the activation loop. We surveyed the yeast, fly, worm, human, Arabidopsis, and rice kinomes (3,723 kinases) and found that despite the small number of non-RD kinases in these genomes (9%-29%), 12 of 15 kinases known or predicted to function in PRR signaling fall into the non-RD class. These data indicate that kinases associated with PRRs can largely be predicted by the lack of a single conserved residue and reveal new potential plant PRR subfamilies.  相似文献   

18.
Cross-talk between endocrine-disrupting chemicals and cytokine signaling through estrogen receptors     
Sekine Y  Yamamoto T  Yumioka T  Imoto S  Kojima H  Matsuda T 《Biochemical and biophysical research communications》2004,315(3):692-698
  相似文献   

19.
The INs and OUTs of pattern recognition receptors at the cell surface     
Beck M  Heard W  Mbengue M  Robatzek S 《Current opinion in plant biology》2012,15(4):367-374
Pattern recognition receptors (PRRs) enable plants to sense non-self molecules displayed by microbes to mount proper defense responses or establish symbiosis. In recent years the importance of PRR subcellular trafficking to plant immunity has become apparent. PRRs traffic through the endoplasmatic reticulum (ER) and the Golgi apparatus to the plasma membrane, where they recognize their cognate ligands. At the plasma membrane, PRRs can be recycled or internalized via endocytic pathways. By using genetic and biochemical tools in combination with bioimaging, the trafficking pathways and their role in PRR perception of microbial molecules are now being revealed.  相似文献   

20.
cGLRs are a diverse family of pattern recognition receptors in innate immunity     
《Cell》2023,186(15):3261-3276.e20
  1. Download : Download high-res image (167KB)
  2. Download : Download full-size image
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号