首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Normal prostate epithelial cells are acutely sensitive to the antiproliferative action of 1alpha,25-dihydroxyvitamin D(3) (1alpha,25(OH)(2)D(3)), whilst prostate cancer cell lines and primary cultures display a range of sensitivities. We hypothesised that key antiproliferative target genes of the Vitamin D receptor (VDR) were repressed by an epigenetic mechanism in 1alpha,25(OH)(2)D(3)-insensitive cells. Supportively, we found elevated nuclear receptor co-repressor and reduced VDR expression correlated with reduced sensitivity to the antiproliferative action of 1alpha,25(OH)(2)D(3). Furthermore, the growth suppressive actions of 1alpha,25(OH)(2)D(3) can be restored by co-treatment with low doses of histone deacetylation inhibitors, such as trichostatin A (TSA) to induce apoptosis. Examination of the regulation of VDR target genes revealed that co-treatment of 1alpha,25(OH)(2)D(3) plus TSA co-operatively upregulated GADD45alpha. Similarly in a primary cancer cell culture, the regulation of appeared GADD45alpha repressed. These data demonstrate that prostate cancer cells utilise a mechanism involving deacetylation to suppress the responsiveness of VDR target genes and thus ablate the antiproliferative action of 1alpha,25(OH)(2)D(3).  相似文献   

2.
Induction of growth arrest and differentiation of some cancer cells by 1alpha,25-dihydroxyvitamin D(3) [1alpha,25(OH)(2)D(3)], and its potent analogs, is well characterized. However, aggressive cancer cell lines are often either insensitive to the antiproliferative effects of 1alpha,25(OH)(2)D(3) or require toxic concentrations to recapitulate them which has, to-date, precluded its use in anticancer therapy. Therefore we are interested in mechanisms by which 1alpha,25(OH)(2)D(3) signaling has become deregulated in malignant cells in order to identify novel therapeutic targets. We observed previously that 1alpha,25(OH)(2)D(3) and its metabolites, generated via the C-24 oxidation pathway, drive simultaneous differentiation and hyper-proliferation within the same cell population. Thus we have proposed that metabolism of 1alpha,25(OH)(2)D(3) via the C-24 oxidation pathway represents a novel-signaling pathway, which integrates proliferation with differentiation. In the current study we examined further the role of this pathway and demonstrated that these effects are not restricted to leukemic cells but are observed also in both normal myeloid progenitors and breast cancer cell lines. Intriguingly, stable transfection of MCF-7 breast cancer cells with antisense vitamin D(3) receptor (VDR) reduced antiproliferative sensitivity to 1alpha,25(OH)(2)D(3) but significantly enhanced growth stimulation, which, in turn, was blocked by inhibiting metabolism of 1alpha,25(OH)(2)D(3) via C-24 oxidation pathway with ketoconazole. Taken together, these studies indicate that metabolism of 1alpha,25(OH)(2)D(3) via C-24 oxidation pathway gives rise to ligands with different biologic effects. We propose that this mechanism may allow the co-ordination of population expansion and cell maturation during differentiation. Cancer cells appear to corrupt this process during malignant transformation, by only responding to the pro-proliferative signals, thereby deriving a clonal advantage.  相似文献   

3.
1alpha,25-Dihydroxyvitamin D(3)-3-bromoacetate (1, 25(OH)(2)D(3)-3-BE), an affinity labeling analog of 1alpha, 25-dihydroxyvitamin D(3) (1,25(OH)(2)D(3)), displayed stronger antiproliferative activities than 1,25(OH)(2)D(3) at 10(-10)-10(-6) M dose levels in cultured human keratinocytes (CHK). Additionally, preincubation of the cells with 10(-6) M 1,25(OH)(2)D(3), followed by treatment with various doses of 1,25(OH)(2)D(3)-3-BE, resulted in a significantly stronger antiproliferative activity by the mixture than individual reagents at every dose level. To search for a mechanism of this observation, we determined that [(14)C]1, 25(OH)(2)D(3)-3-BE covalently labeled human recombinant 1alpha, 25-dihydroxyvitamin D(3) receptor (reVDR) swiftly (<1 min) with a 1:1 stoichiometry and induced conformational changes (in VDR) that are different from 1,25(OH)(2)D(3), by limited tryptic digestion. Furthermore, a protein band, corresponding to reVDR, was specifically labeled by [(14)C]1,25(OH)(2)D(3)-3-BE in CHK extract, indicating that VDR is the main target of [(14)C]1, 25(OH)(2)D(3)-3-BE. The above-mentioned observations suggest that a rapid covalent labeling of VDR in CHK might alter the interaction between the holo-VDR and 1,25(OH)(2)D(3)-controlled genes. Furthermore, we observed that 1,25(OH)(2)D(3)-3-BE significantly decreased the binding of VDR to human osteocalcin vitamin D responsive element (hOCVDRE), as well as the dissociation rate of VDR from hOCVDRE, compared with 1,25(OH)(2)D(3) in COS-1 cells, transiently transfected with a VDR construct. Additionally, 1, 25(OH)(2)D(3)-3-BE was found to be more potent in inducing 1alpha, 25-dihydroxyvitamin D(3)-24-hydroxylase (24-OHase) promoter activity and mRNA expression in keratinocytes. The accumulation of 24-OHase message was also prolonged by the analog. Collectively these results indicated that rapid covalent labeling of VDR in keratinocytes (by 1, 25(OH)(2)D(3)-3-BE) might result in the conversion of apo-VDR to a holo-form, with a conformation that is different from that of the 1, 25(OH)(2)D(3)-VDR complex. This resulted in an enhanced stability of the 1,25(OH)(2)D(3)-3-BE/VDR-VDRE complex and contributed to the amplified antiproliferative effect of 1,25(OH)(2)D(3)-3-BE in keratinocytes.  相似文献   

4.
5.
Recently, it has been reported that 25-hydroxyvitamin D3-1alpha-hydroxylase [1alpha(OH)ase, CYP27B1], required to convert non-toxic 25-hyxdroxyvitamin D3 [25(OH)D(3)] to its active metabolite [1alpha,25(OH)(2)D(3)], is present in the epithelial cells of the human colon. In the present study, the potential chemoprotective role of 25(OH)D(3) was evaluated for colon cancer using the HT-29, human colon cancer cell line. Colon cancer cells were treated with 25(OH)D(3) (500nM or 1muM), 1alpha,25(OH)(2)D(3) (500nM), cholecalciferol (D3, 1muM) or vehicle and cell number determined at days 2 and 5 post-treatment. Results showed that both 25(OH)D(3) and 1alpha,25(OH)(2)D(3) induced dose- and time-dependent anti-proliferative effects on the HT-29 cells, with maximum inhibition noted at day 5. Western blot analyses revealed an up-regulation of VDR and 1alpha(OH)ase expression following 24h of treatment with 25(OH)D(3), and 1alpha,25(OH)(2)D(3). These results are consistent with the expression of VDR and 1alpha(OH)ase in samples of normal colonic tissue, aberrant crypt foci (ACFs) and colon adenocarcinomas. The VDR expression was sequentially increased from normal to pre-cancerous lesions to well-differentiated tumors and then decreased in poorly differentiated tumors. Expression of 1alpha(OH)ase was equally expressed in normal, pre-cancerous lesions and malignant human colon tissues. The increased expression of 1alpha(OH)ase in colon cancer cells treated with the pro-hormone and its anti-proliferative effects, suggest that 25(OH)D(3) may offer possible therapeutic and chemopreventive option in colon cancer.  相似文献   

6.
The active form of Vitamin D, 1alpha,25-dihydroxyvitamin D(3) [1,25-(OH)(2)D(3)], has potent antiproliferative actions on various normal and malignant cells. Calcemic effects, however, hamper therapeutic application of 1,25-(OH)(2)D(3) in hyperproliferative diseases. Two 14-epi-analogs of 1,25-(OH)(2)D(3) namely 19-nor-14-epi-23-yne-1,25-(OH)(2)D(3) (TX522) and 19-nor-14,20-bisepi-23-yne-1,25-(OH)(2)D(3) (TX527), display reduced calcemic effects coupled to an (at least 10-fold) increased antiproliferative potency when compared with 1,25-(OH)(2)D(3). Altered cofactor recruitment by the Vitamin D receptor (VDR) might underlie the superagonism of these 14-epi-analogs. Therefore, this study aims to evaluate their effects at the level of VDR-coactivator interactions. Mammalian two-hybrid assays with VDR and the coactivators TIF2 and DRIP205 showed the 14-epi-analogs to be more potent inducers of VDR-coactivator interactions than 1,25-(OH)(2)D(3). TX522 and TX527 require 30- and 40-fold lower doses to obtain the VDR-DRIP205 interaction induced by 1,25-(OH)(2)D(3) at 10(-8)M. Evaluation of additional 1,25-(OH)(2)D(3)-analogs and their impact on VDR-coactivator interactions revealed a strong correlation between the antiproliferative potency of an analog and its ability to induce VDR-coactivator interactions. In conclusion, these data show that altered coactivator binding by the VDR is one possible explanation for the superagonistic action of the two 14-epi-analogs TX522 and TX527.  相似文献   

7.
Prostate cancer (PCa) cells express vitamin D receptors (VDR) and 1,25-dihydroxyvitamin D(3) (1,25(OH)(2)D(3)) inhibits the growth of epithelial cells derived from normal, benign prostate hyperplasia, and PCa as well as established PCa cell lines. The growth inhibitory effects of 1,25(OH)(2)D(3) in cell cultures are modulated tissue by the presence and activities of the enzymes 25-hydroxyvitamin D(3) 24-hydroxylase which initiates the inactivation of 1,25(OH)(2)D(3) and 25-hydroxyvitamin D(3) 1alpha-hydroxylase which catalyses its synthesis. In LNCaP human PCa cells 1,25(OH)(2)D(3) exerts antiproliferative activity predominantly by cell cycle arrest through the induction of IGF binding protein-3 (IGFBP-3) expression which in turn increases the levels of the cell cycle inhibitor p21 leading to growth arrest. cDNA microarray analyses of primary prostatic epithelial and PCa cells reveal that 1,25(OH)(2)D(3) regulates many target genes expanding the possible mechanisms of its anticancer activity and raising new potential therapeutic targets. Some of these target genes are involved in growth regulation, protection from oxidative stress, and cell-cell and cell-matrix interactions. A small clinical trial has shown that 1,25(OH)(2)D(3) can slow the rate of prostate specific antigen (PSA) rise in PCa patients demonstrating proof of concept that 1,25(OH)(2)D(3) exhibits therapeutic activity in men with PCa. Further investigation of the role of calcitriol and its analogs for the therapy or chemoprevention of PCa is currently being pursued.  相似文献   

8.
Proliferation of the non-malignant breast epithelial cell line, MCF-12A, is sensitively and completely inhibited by 1alpha,25-dihydroxyvitamin D(3) (1alpha,25(OH)(2)D(3)) (ED90 = 70 nM), We used real time RT-PCR to demonstrate that the relative resistance to 1alpha,25(OH)(2)D(3) of MDA-MB-231 cells (ED50 > 100 nM) correlated with significantly reduced Vitamin D receptor (VDR) and increased NCoR1 nuclear receptor co-repressor mRNA (0.1-fold reduction in VDR and 1.7-fold increase in NCoR1 relative to MCF-12A (P < 0.05)). This molecular lesion can be targeted by co-treating cells with 1alpha,25(OH)(2)D(3) or potent analogs and the histone deacetylation inhibitor trichostatin A (TSA). For example, the co-treatment of 1,25-dihydroxy-16,23,Z-diene-26,27-hexafluoro-19-nor Vitamin D(3) (RO-26-2198) (100 nM) plus TSA results in strong additive antiproliferative effects in MDA-MB-231 cells. This may represent novel chemotherapeutic regime for hormone insensitive breast cancer.  相似文献   

9.
1alpha,25-dihydroxyvitamin D(3) (1alpha,25(OH)(2)D(3)), the active metabolite of vitamin D, mediates many of its effects through the intranuclear vitamin D receptor (VDR, NR1I1), that belongs to the large superfamily of nuclear receptors. Vitamin D receptor can directly regulate gene expression by binding to vitamin D response elements (VDREs) located in promoter or enhancer regions of various genes. Although numerous synthetic analogs of 1alpha,25(OH)(2)D(3) have been analysed for VDR binding and transactivation of VDRE-driven gene expression, the biologic activity of many naturally occurring metabolites has not yet been analyzed in detail. We therefore studied the transactivation properties of 1alpha,24R, 25-trihydroxyvitamin D(3) (1alpha,24R,25(OH)(3)D(3)), 1alpha, 25-dihydroxy-3-epi-vitamin D(3) (1alpha,25(OH)(2)-3-epi-D(3)), 1alpha,23S,25-trihydroxyvitamin D(3) (1alpha,23S,25(OH)(3)D(3)), and 1alpha-hydroxy-23-carboxy-24,25,26,27-tetranorvitamin D(3) (1alpha(OH)-24,25,26,27-tetranor-23-COOH-D(3); calcitroic acid) using the human G-361 melanoma cell line. Cells were cotransfected with a VDR expression plasmid and luciferase reporter gene constructs driven by two copies of the VDRE of either the mouse osteopontin promoter or the 1alpha,25(OH)(2)D(3) 24-hydroxylase (CYP24) promoter. Treatment with 1alpha,25(OH)(2)D(3) or the metabolites 1alpha,24R,25(OH)(3)D(3), 1alpha,25(OH)(2)-3-epi-D(3), and 1alpha,23S,25(OH)(3)D(3) resulted in transactivation of both constructs in a time- and dose-dependent manner, and a postitive regulatory effect was observed even for calcitroic acid in the presence of overexpressed VDR. The metabolites that were active in the reporter gene assay also induced expression of CYP24 mRNA in the human keratinocyte cell line HaCaT, although with less potency than the parent hormone. A ligand-binding assay based on nuclear extracts from COS-1 cells overexpressing human VDR demonstrated that the metabolites, although active in the reporter gene assay, were much less effective in displacing [(3)H]-labeled 1alpha,25(OH)(2)D(3) from VDR than the parent hormone. Thus, we report that several natural metabolites of 1alpha,25(OH)(2)D(3) retain significant biologic activity mediated through VDR despite their apparent low affinity for VDR.  相似文献   

10.
Ishizuka S  Miura D  Ozono K  Saito M  Eguchi H  Chokki M  Norman AW 《Steroids》2001,66(3-5):227-237
We synthesized various analogues of 1alpha,25-(OH)(2)D(3)-26,23-lactone and examined the effects of them on HL-60 cell differentiation using the evaluation system of the genomic action of 1alpha,25-(OH)(2)D(3). We found that (23S)- and (23R)-25-dehydro-1alpha-OH-D(3)-26,23-lactone (TEI-9647 and TEI-9648) strongly bound to the VDR, but did not induce HL-60 cell differentiation. Intriguingly, TEI-9647 and TEI-9648 did inhibit that induced by 1alpha,25-(OH)(2)D(3), whereas they did not suppress that caused by retinoic acid or TPA. On the contrary, the similar 25-dehydrated 24-dehydro analogues, TEI-D1807 and TEI-D1808, weakly but significantly induced HL-60 cell differentiation, never showing inhibitory effect on HL-60 cell differentiation induced by 1alpha,25-(OH)(2)D(3). In other experiments, TEI-9647 and TEI-9648 markedly suppressed 25-OH-D(3)-24-hydroxylase gene expression induced by 1alpha,25-(OH)(2)D(3) in HL-60 cells. TEI-9647 also inhibited the heterodimer formation between VDR and RXRalpha, and the VDR interaction with co-activator SRC-1 according to the results obtained from the mammalian two-hybrid system in Saos-2 cells. Taking all these results into consideration, we reached a manifest conclusion that TEI-9647 and TEI-9648 are the specific and first antagonists of 1alpha,25-(OH)(2)D(3) action, specifically VDR-VDRE mediated genomic action.  相似文献   

11.
1alpha,25(OH)(2)D(3) regulates rat growth plate chondrocytes via nuclear vitamin D receptor (1,25-nVDR) and membrane VDR (1,25-mVDR) mechanisms. To assess the relationship between the receptors, we examined the membrane response to 1alpha,25(OH)(2)D(3) in costochondral cartilage cells from wild type VDR(+/+) and VDR(-/-) mice, the latter lacking the 1,25-nVDR and exhibiting type II rickets and alopecia. Methods were developed for isolation and culture of cells from the resting zone (RC) and growth zone (GC, prehypertrophic and upper hypertrophic zones) of the costochondral cartilages from wild type and homozygous knockout mice. 1alpha,25(OH)(2)D(3) had no effect on [(3)H]-thymidine incorporation in VDR(-/-) GC cells, but it increased [(3)H]-thymidine incorporation in VDR(+/+) cells. Proteoglycan production was increased in cultures of both VDR(-/-) and VDR(+/+) cells, based on [(35)S]-sulfate incorporation. These effects were partially blocked by chelerythrine, which is a specific inhibitor of protein kinase C (PKC), indicating that PKC-signaling was involved. 1alpha,25(OH)(2)D(3) caused a 10-fold increase in PKC specific activity in VDR(-/-), and VDR(+/+) GC cells as early as 1 min, supporting this hypothesis. In contrast, 1alpha,25(OH)(2)D(3) had no effect on PKC activity in RC cells isolated from VDR(-/-) or VDR(+/+) mice and neither 1beta,25(OH)(2)D(3) nor 24R,25(OH)(2)D(3) affected PKC in GC cells from these mice. Phospholipase C (PLC) activity was also increased within 1 min in GC chondrocyte cultures treated with 1alpha,25(OH)(2)D(3). As noted previously for rat growth plate chondrocytes, 1alpha,25(OH)(2)D(3) mediated its increases in PKC and PLC activities in the VDR(-/-) GC cells through activation of phospholipase A(2) (PLA(2)). These responses to 1alpha,25(OH)(2)D(3) were blocked by antibodies to 1,25-MARRS, which is a [(3)H]-1,25(OH)(2)D(3) binding protein identified in chick enterocytes. 24R,25(OH)(2)D(3) regulated PKC in VDR(-/-) and VDR(+/+) RC cells. Wild type RC cells responded to 24R,25(OH)(2)D(3) with an increase in PKC, whereas treatment of RC cells from mice lacking a functional 1,25-nVDR caused a time-dependent decrease in PKC between 6 and 9 min. 24R,25(OH)(2)D(3) dependent PKC was mediated by phospholipase D, but not by PLC, as noted previously for rat RC cells treated with 24R,25(OH)(2)D(3). These results provide definitive evidence that there are two distinct receptors to 1alpha,25(OH)(2)D(3). 1alpha,25(OH)(2)D(3)-dependent regulation of DNA synthesis in GC cells requires the 1,25-nVDR, although other physiological responses to the vitamin D metabolite, such as proteoglycan sulfation, involve regulation via the 1,25-mVDR.  相似文献   

12.
The role of vitamin D in prostate cancer   总被引:3,自引:0,他引:3  
Zhao XY  Feldman D 《Steroids》2001,66(3-5):293-300
Prostate cancer is the second leading cause of cancer deaths in men in the United States. Developing new treatment strategies is critical to improving the health of men. This article will be a general review of the field with a focus on research from our laboratory. Our research has focused on four areas in which we have pursued the possible use of 1alpha,25(OH)(2)D(3) and its analogs to treat prostate cancer: 1) The ability of 1alpha,25(OH)(2)D(3) to up-regulate androgen receptors in LNCaP human prostate cancer cells. The implications of this finding on 1alpha,25(OH)(2)D(3)'s ability to inhibit cell growth in vivo are unclear at present.2) The reasons for an inability of 1alpha,25(OH)(2)D(3) to inhibit DU 145 prostate cancer cell growth were explored. We found that combination of an imidazole drug, Liarozole, with 1alpha,25(OH)(2)D(3) was capable of inhibiting DU 145 cell growth.3) A number of low-calcemic vitamin D analogs exhibit potent anti-proliferative activity on prostate cancer cells. We have developed a novel approach using the yeast two-hybrid system to screen for potent analogs.4) The results of a clinical trial of 1alpha,25(OH)(2)D(3) treatment of patients with early recurrent prostate cancer. We provide preliminary evidence that 1alpha,25(OH)(2)D(3) may be effective in slowing the rate of PSA rise in selected cases of prostate cancer.In conclusion, we believe that 1alpha,25(OH)(2)D(3) has a role in the treatment and/or prevention strategies being developed for prostate cancer. However, to increase antiproliferative potency without increasing side-effects, the use of less calcemic analogs appears to be the most reasonable approach.  相似文献   

13.
14.
1alpha,25-Dihydroxyvitamin D(3) (1alpha,25(OH)(2)D(3)) is known to inhibit the proliferation and invasiveness of prostate cancer cells. However, 1alpha,25(OH)(2)D(3) can cause hypercalcemia and is not suitable as a therapeutic agent. 19-Nor-vitamin D derivatives are known to be less calcemic when administered systemically. In order to develop more potent anti-cancer agents with less calcemic side effect, we therefore utilized (3)H-thymidine incorporation as an index for cell proliferation and examined the antiproliferative activities of nine C-2-substituted 19-nor-1alpha,25(OH)(2)D(3) analogs in the immortalized PZ-HPV-7 normal prostate cell line. Among the nine analogs we observed that the substitution with 2alpha- or 2beta-hydroxypropyl group produced two analogs having antiproliferative potency that is approximately 500- to 1000-fold higher than 1alpha,25(OH)(2)D(3). The (3)H-thymidine incorporation data were supported by the cell counting data after cells were treated with 1alpha,25(OH)(2)D(3), 19-nor-2alpha-(3-hydroxypropyl)-1alpha,25(OH)(2)D(3) or 19-nor-2beta-(3-hydroxypropyl)-1alpha,25(OH)(2)D(3) for 7 days. 19-Nor-2alpha-(3-hydroxypropyl)-1alpha,25(OH)(2)D(3) and 19-nor-2beta-(3-hydroxypropyl)-1alpha,25(OH)(2)D(3) were also shown to be about 10-fold more active than 1alpha,25(OH)(2)D(3) in cell invasion studies using prostate cancer cells. In conclusion, a substitution at the C-2 position of 19-nor-1alpha,25(OH)(2)D(3) molecule with a hydroxypropyl group greatly increased the antiproliferative and anti-invasion potencies. Thus, these two analogs could be developed to be effective therapeutic agents for treating early and late stages of prostate cancer.  相似文献   

15.
16.
17.
18.
A 25-carboxylic ester analogue of 1alpha,25-dihydroxyvitamin D(3) (1alpha,25-(OH)(2)D(3)), ZK159222, was described as a novel type of antagonist of 1alpha,25-(OH)(2)D(3) signaling. The ligand sensitivity of ZK159222, in facilitating complex formation between 1alpha,25-(OH)(2)D(3) receptor (VDR) and the retinoid X receptor (RXR) on a 1alpha,25-(OH)(2)D(3) response element (VDRE), was approximately 7-fold lower when compared with 1alpha,25-(OH)(2)D(3). However, ZK159222 was not able to promote a ligand-dependent interaction of the VDR with the coactivator proteins SRC-1, TIF2, and RAC3, neither in solution nor in a complex with RXR on DNA. Functional analysis in HeLa and COS-7 cells demonstrated a 10-100-fold lower ligand sensitivity for ZK159222 than for 1alpha, 25-(OH)(2)D(3) and, most interestingly, a potency that was drastically reduced compared with 1alpha,25-(OH)(2)D(3). A cotreatment of 1alpha,25-(OH)(2)D(3) with a 100-fold higher concentration of ZK159222 resulted in a prominent antagonistic effect both in functional in vivo and in in vitro assays. These data suggest that the antagonistic action of ZK159222 is due to a lack of ligand-induced interaction of the VDR with coactivators with a parallel ligand sensitivity, which is sufficient for competition with the natural hormone for VDR binding.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号