首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The peritrophic membrane of Drosophila melanogaster consists of four layers, each associated with a specific region of the folded epithelial lining of the cardia. The epithelium is adapted to produce this multilaminar peritrophic membrane by bringing together several regions of foregut and midgut, each characterized by a distinctively differentiated cell type. The very thin, electron-dense inner layer of the peritrophic membrane originates adjacent to the cuticular surface of the stomadeal valve and so appears to require some contribution by the underlying foregut cells. These foregut cells are characterized by dense concentrations of glycogen, extensive arrays of smooth endoplasmic reticulum, and pleated apical plasma membranes. The second and thickest layer of the peritrophic membrane coalesces from amorphous, periodic acid-Schiff-positive material between the microvilli of midgut cells in the neck of the valve. The third layer of the peritrophic membrane is composed of fine electron-dense granules associated with the tall midgut cells of the outer cardia wall. These columnar cells are characterized by cytoplasm filled with extensive rough endoplasmic reticulum and numerous Golgi bodies and by an apical projection filled with secretory vesicles and covered by microvilli. The fourth, outer layer of the peritrophic membrane originates over the brush border of the cuboidal midgut cells, which connect the cardia with the ventriculus.  相似文献   

2.
Summary Columnar cells of the larval midgut of the cassava hornworm, Erinnyis ello, display microvilli with vesicles pinching off from their tips (anterior and middle midgut) or with a large number of double membrane spheres budding along their length (posterior midgut). Basal infoldings in columnar cells occur in a parallel array with many openings to the underlying space (posterior midgut) or are less organized with few openings (anterior and middle midgut). Goblet cells have a cavity, which is formed by invagination of the apical membrane and which occupies most of the cell (anterior and middle midgut) or only its upper part (posterior midgut). The infolded apical membrane shows modified microvilli, which sometimes (posterior midgut) or always (anterior and middle midgut) contain mitochondria. The cytoplasmic side of the membrane of the microvilli that contain mitochondria are studded with small particles. The results suggest that the anterior and middle region of the midgut absorbs water, whereas the posterior region secretes it. This results in a countercurrent flux of fluid, which is responsible for the enzyme recovery from undigested food before it is expelled. Intermediary and final digestion of food probably occur in the columnar cells under the action of plasma membrane-bound and glycocalix-associated enzymes.  相似文献   

3.
The ultrastructure of the midgut and the tubular salivary glands of Frankliniella occidentalis (Thysanoptera : Thripidae) is described. The microvilli have 2 different types of glycocalyx: in the anterior part of the midgut they are surrounded by a myelin-like membrane; in the posterior region, the microvilli have numerous rod-like projections arranged to form a continuous layer. Microfilaments longitudinally cross each microvillus; the microfilaments contain F-actin. Tubular salivary glands flank the midgut but do not fuse with it. The distal part of these glands have microvillated cells containing large amounts of electron-transparent material. The cells of the proximal part are lined with a thin cuticle.  相似文献   

4.
 This study presents histological and scanning electron microscopical findings on the structural differentiation, and the nervous and vascular supply of the digestive tracts of Nautilus pompilius and N. macromphalus, including the foregut, stomach, vestibulum, caecum, midgut and rectum. The stereoscopic reconstruction of the vestibulocaecal complex gives an idea how the digestive cycle between the stomach, vestibulum, caecum and proximal midgut could possibly proceed. All parts of the digestive tract are covered luminally by a columnar epithelium which contains numerous goblet cells. The epithelium is ciliated in the vestibulum, caecum, proximal midgut and the longitudinal groove of the rectum. On this lamina epithelialis mucosae borders the lamina propria mucosae, which consists of connective tissue and some muscle cells. In the stomach it is differentiated, forming a special bolster-like layer. The lamina propria mucosae is followed by the tunica muscularis, which consists of a stratum circulare and a stratum longitudinale in the foregut, vestibulum, caecum, midgut and rectum. In the stomach, midgut and rectum, the tunica adventitia, which consists of a thin layer of connective tissue, is located between the tunica muscularis and the cuboidal tunica serosa. Accepted: 4 August 1997  相似文献   

5.
Apoptotic and necrotic changes in the midgut epithelium cells of Allacma fusca (Collembola, Symphypleona) are described at the ultrastructural level. The morphological sign indicating the beginning of the apoptotic process in these cells is their shrinkage and the transformation of their mitochondria. The nucleus assumes a lobular shape and finally undergoes fragmentation. The intercellular junctions between an apoptotic cell and adjacent epithelial cells gradually disappear. Apoptotic cells are discharged into the midgut lumen just beneath the peritrophic membrane, where they are initially distributed singly but ultimately form a single layer. No phagocytosis was observed, so no apoptotic bodies are formed. Only young midgut epithelium shows apoptosis; as cells age, necrosis accompanies apoptosis, and necrosis finally completely replaces apoptosis.  相似文献   

6.
The origin of midgut epithelium may begin either from yolk cells (energids), tips of stomo- and proctodaeum (ectoderm), inner layer (endoderm) or from both kinds of the above mentioned cells. The origin of the midgut epithelium in wingless insects (Apterygota) has still not been determined. In Thermobia domestica the formation of midgut is much delayed, and it completes in the post-embryonic stage, while the stomo- and the proctodaeum are well-developed in the embryonic period. The energids, which remain inside the yolk, start to migrate to its periphery, where they arrange singly close to cell membrane. The yolk mass with the energids at the 14th day of embryogenesis are referred to as the primary midgut. During the first instar larval stage more and more energids migrate to the yolk periphery and the cell membrane starts to form numerous foldings surrounding the groups of energids, which in turn lead to formation of isolated regenerative cell groups. Eventually the cell membrane invaginations reach the center of the yolk mass. Large cells of the primary epithelium, surrounding the newly formed midgut lumen are formed. The cells of the primary epithelium are filled with yolk and are equipped with microvilli pointing to the midgut lumen. As the yolk is being digested, the process of the primary epithelium cells degeneration begins. The cells are getting shorter and start to degenerate. The definitive midgut epithelium is formed from proliferating regenerative cells. It consists of regularly spaced regenerative cell groups as well as the epithelial cells. The ultrastructure of both these cell groups has been described.  相似文献   

7.
Light, scanning, and transmission electron microscopy are used to examine the morphology and ultrastructure of the peculiar digestive tract of the turtle ant, Zacryptocerus rohweri. The proventriculus is heavily sclerotized and covered with clusters of small spines. Narrow spine-lined channels converging at the opening to the midgut act as a fine filter of food; particles >12.5 μm are unable to pass through the proventriculus. In the midgut, ultrastructural study reveals bacteria among the microvilli of midgut epithelial cells. The hindgut of Z. rohweri consists of an enlarged, dark-colored pouch filled with masses of bacteria of three major morphotypes. A thick layer of circular muscle and deep infoldings of the epithelium greatly increase surface area for absorption. Newly emerged individuals appear to acquire these microorganisms by soliciting material from the abdomen tip of other older workers in the colony. Whether or not the hindgut bacteria are true symbionts is unknown; their acquisition and presence suggest that they may supplement the ants' limited, liquid diet by supplying essential amino acids and other nutrients. J. Morphol. 234:253–262, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

8.
Shatrov, A. B. 2010. Ultrastructure and functional features of midgut of an adult water mite Teutonia cometes (Koch 1837) (Hydrachnidia: Teutoniidae). —Acta Zoologica (Stockholm) 91 : 222–232 The midgut of the adult water mite Teutonia cometes (Koch 1837) (Hydrachnidia: Teutoniidae) was investigated by means of transmission electron microscopy and on semi‐thin sections. The midgut is represented by a blind sac composed of the narrow ventriculus, two proventricular lateral diverticula and three pairs of postventricular caeca. A single‐layered epithelium consists of one type of endodermal digestive cells of quite different shape and size, which may form protrusions into the midgut lumen. The large nuclei are frequently lobed and contain one to three nucleoli. The apical cell membrane forms short scarce microvilli, between their bases the pinocytotic vesicles of unspecific macropinocytosis as well as the narrow pinocytotic canals are formed and immersed into the cell. The intracellular digestion of the food ingested into the midgut after extraintestinal digestion is predominant. The pinocytotic vesicles fuse with small clear vesicles of proposed Golgi origin to form secondary lysosomes. The digestive cells also contain small amounts of rough endoplasmic reticulum, variously structured heterolysosomes, residual materials in the form of both the small electron‐dense bodies and the large variously granulated substances, reserve nutritive materials such as lipid and glycogen, as well as clear vacuoles. Residual materials are obviously extruded from the cells into the gut lumen.  相似文献   

9.
The alimentary canal of cicada Platypleura kaempferi is described. It comprises the oesophagus, filter chamber, external midgut section and hindgut. The elongate oesophagus expands posteriorly, with its posterior end constricting to become a bulb. The filter chamber consists of two parts: a very thin sheath and a filter organ. The filter organ is composed of the anterior and posterior ends of the midgut (internal midgut section), and the internal proximal ends of the Malpighian tubules. The external midgut section differentiates into a collapsed sac and a midgut loop. The latter is divided into three distinct segments. The hindgut contains a dilated rectum and a long narrow ileum. The distal portions of the four Malpighian tubules are enclosed in a peritoneal sheath together with the distal ileum before reaching to the rectum. Ultrastructurally, the oesophagus and the hindgut are lined with a cuticle. The filter chamber sheath consists of cells with large irregular nuclei. Filamentous substances coat the microvilli of the cells of the internal midgut section. The posterior end of the midgut comprises two types of cells, with the first type of cells containing many vesicles and scattered elements of rough endoplasmic reticulum. The anterior and posterior segments of the midgut loop cells have ferritin‐like granules. The ileum cells have well‐developed apical leaflets associated with mitochondria. Accumulations of virus‐like particles enclosed in the membrane are observed in the esophagus, conical segment, mid‐ and posterior segments of the midgut loop.  相似文献   

10.
The midgut of Portunus sanguinolentus comprises the intestine, the anterior and posterior midgut caeca and the hepatopancreas. The hindgut comprises the rectum, which continues to the anus, a slit-like opening on the ventral surface of the telson. The limits of the midgut and hindgut are specified. The midgut has no cuticle, whereas the hindgut is lined with a cuticle composed of an outer keratin and an inner collagen layer. Four types of cells--E,R,F, and B--were differentiated in the hepatopancreas. Histochemically, the hepatopancreas contains moderate amounts of glycogen and large quantities of lipids and proteins, but no mucopolysaccharides.  相似文献   

11.
For the first time a sugar receptor (lectin) has been localized by electron microscopy in an invertebrate. The peritrophic membrane of the blowfly larva, Calliphora erythrocephala, is shown here to express lectins with high specificity for mannose. The lectin is restricted to the lumen side of the peritrophic membrane. The surface of the midgut epithelium is devoid of mannose-specific lectins. It is suggested that the midgut epithelium has lost these lectins during the course of evolution in favour of the peritrophic membrane which is secreted by specialized cells only at the beginning of the midgut.Peritrophic membranes and the midgut epithelium lack lectins specific for galactose. The lumen side of the peritrophic membrane of the larvae has mannose and/or glucose residues, and it is densely packed with two species of bacteria, Proteus vulgaris and P. morganii. These also have mannose-specific lectins as well as mannose residues on their pili. The existence of mannose-specific receptors and mannose residues on both, peritrophic membranes and bacteria, leads to the assumption of mutual adherence between the two surfaces.  相似文献   

12.
Streltzoviella insularis (Staudinger) is an important tree‐boring pest, that primarily damages Sophora japonica (Linnaeus) and Ginkgo biloba (Linnaeus), as well as other common species, at great economic cost to the urban landscape construction industry in China. In the present study, the alimentary canal morphology of S. insularis was observed using light microscopy, and its ultrastructure was investigated by scanning and transmission electron microscopy. The foregut of S. insularis can be divided into the pharynx, esophagus, crop, proventriculus, and cardiac valve. The well‐developed crop forms the longest section of the foregut. It is able to store large amounts of food and is lined with a monolayer of epithelial cells. Many sclerotized microspines occur on the surface of the anterior intima and there are dense spines on the posterior intima of the proventriculus. Epithelial cells of the midgut include columnar cells, goblet cells, and regenerative cells, but endocrine cells are absent. The hindgut consists of the pyloric valve, ileum, and rectum. There is no clear distinction between the ileum and colon. The intima surface of the pyloric valve carries many microspines, whereas the intestinal wall of the rectum is thin with well‐developed rectal pads. The rectal epithelial cells form a squamous monolayer. A cryptonephric excretory system is located in the hindgut. There are six spiral Malpighian tubules, in which a cellular layer on a basement membrane encloses a lumen. These results will provide the basis for further studies of the structure and function in S. insularis larvae.  相似文献   

13.
The midgut of Cryptocellus boneti was studied by light and electron microscopy. The epithelia of the diverticula and of the anterior part of the midgut tube are composed of two cell types: digestive and secretory. In contrast, the epithelia of posterior part of the midgut tube and of the stercoral pocket consist of one type of cells only. In some places, parts of the midgut system are connected by an intermediate tissue. Digestive cells are characterized by an apical system of tubules, nutritional vacuoles, and spherites; characteristic features of secretory cells are secretory granules and a prominent rough endoplasmic reticulum. Cells of the midgut tube appear not to be involved in the absorption of food. © 1994 Wiley-Liss, Inc.  相似文献   

14.
The alimentary tract of barnacles is made up of cuticle-lined foregut and hindgut with an intervening U-shaped midgut associated anteriorly with a pair of pancreatic glands and perhaps midgut caeca. Epithelial salivary glands secrete acid mucopolysaccharide, glycoprotein or both. Cells of all the midgut regions are capable of absorption which is carried out mainly by the anterior midgut and caeca. Midgut cells of Balanus balanoides (L.) show a seasonal variation in the distribution of intracellular lipid droplets. Midgut cells rest on an elastic basal lamina and secrete a peritrophic membrane which contains mucopolysaccharide and protein. Cells of the stratum perintestinale connect with the midgut epithelial cells via cell processes which probably translocate absorbed materials. Glycoprotein globules and lipid droplets accumulate in the body parenchyma of B. balanoides and are transported to the ovaries to form yolk (glycolipovitellin). The pancreatic gland cells of all barnacles are active secretory cells secreting proteinaceous material (probably digestive enzymes).  相似文献   

15.
Summary A net absorption of sodium ions and ofl-phenylalanine, in the absence of chemical gradients, occurs across the isolated midgut of the cockroachBlabera gigantea. Both sodium and amino acid net fluxes were abolished by the haemolymphatic addition of the Na–K ATPase inhibitor ouabain, at a concentration 1 mM. A purified fraction of brush border membranes, prepared from the midgut tissue by Ca-precipitation, was used to investigate the occurrence of a cotransport system in the luminal membrane of the cockroach enterocyte. An inwardly directed Na gradient (100 mM outside the vesicles, 0 mM inside) drives the uphill movement of phenylalanine into the vesicular space, whilst other monovalent cations fail to induce the concentrative uptake of the amino acid. Moreover, the amino acid uptake seems to be dependent on the transmembrane potential, since inwardly directed gradients of different sodium salts determine a decreasing rate of phenylalanine uptake in agreement with the presumptive permeabilities of Na counterions. These data suggest the presence of a Na-phenylalanine cotransport system located on the brush border membrane ofB. gigantea midgut.Abbreviations BBMV brush border membrane vesicles - HEPES N-2-hydroxyethyl-piperazine-N-2-ethanesulfonic acid - PD transepithelial electrical potential difference - TMA tetramethylammonium - Tris tris-(hydroxymethyl) aminomethane  相似文献   

16.
J Francois  F Graf 《Histochemistry》1988,89(4):379-383
The basement membrane of the midgut and posterior caeca epithelium in the gammaridean amphipod Niphargus virei Chevreux, 1896 is made of an unusual structure. This basal lamina, properly called "basal layer", shows a dense sheet formed by a system of dense hexagonal plates connected by thin filaments. Histochemical studies and enzymatic reactions lead to the conclusion that these structures are proteinaceous, without collagenous protein, and embedded in a neutral polysaccharide matrix. The possible mechanical significance of these mesenteric structures is discussed.  相似文献   

17.
The cytological comparisons of the midgut in Sarcophaga bullata (Parker) between the second instar, the third instar larvae and the adult are made. The adult midgut differs from that of the larvae in the following ways: (1) the peritrophic membrane is thicker than in the larvae and has become multi-layered; (2) epithelial cells are smaller; (3) branched microvilli are present throughout the entire midgut instead of being present only in the posterior region as in the larval midgut; (4) nuclear pores are less frequent; (5) lysosome-type structures occur less frequently; (6) the basal membrane is thicker; (7) the z-bands in the surrounding muscle fibers are more distinct in adults. The possible function and the significance of these structures related to previous observations in Sarcophaga and other Diptera are discussed.  相似文献   

18.
Abstract Unique morphological structures occur near the midgut–hindgut juncture in decapod crustaceans, and neither their fine structure nor function are well understood. In the ghost shrimp Lepidophthalmus louisianensis. structures associated with this juncture include an elongate posterior midgut caecum (PMGC) extending into the abdominal hemocoel, a massive swelling of acinar glands encasing the juncture, and a dorso-lateral valve complex involving cuticularized lumenal surfaces of the anterior hindgut. Vivisection, histological studies (LM, TEM) and paraffin-carving (SEM) have been applied to reconstruct morphology of these components and characterize constituent tissues. The lumen of the PMGC is lined by very elongate columnar cells underlain by a thin layer of circular muscle. The hemocoelic surface of the PMGC is covered by cells richly endowed with unique lamellar bodies. The acinar glands are composed of multiple rosettes of secretory cells, from which products appear to empty into the anterior extreme of the hindgut. The dorso-lateral valve complex of the hindgut consists of anterior and posterior components, differing in strength of lumenal ridging and microdentition of the cuticular lining. Unique features of these structures may relate to behavioral, feeding and metabolic adaptations in this obligate fossorial crustacean.  相似文献   

19.
Lithobius forficatus (Myriapoda, Chilopoda, Lithobiidae) is a widespread species of centipede that is common across Europe. Its midgut epithelial cells are an important line of defense against toxic substances that originate in food, such as pathogens and metals. Despite this important role, the biology of the midgut epithelium is not well known. Here we describe the ultrastructure of the midgut epithelium, as well as the replacement of degenerated midgut epithelial cells. The midgut epithelium of L. forficatus is composed of digestive, secretory, and regenerative cells. The cytoplasm of digestive cells shows regionalization in organelle distribution, which is consistent with the role of these cells in secretion of enzymes, absorption of nutrients, and accumulation of lipids and glycogen. Secretory cells, which do not reach the luminal surface of the midgut epithelium, possess numerous electron‐dense and electron‐lucent granules and may have an endocrine function. Hemidesmosomes anchor secretory cells to the basal lamina. Regenerative cells play the role of midgut stem cells, as they are able to proliferate and differentiate. Their proliferation occurs in a continuous manner, and their progeny differentiate only into digestive cells. The regeneration of secretory cells was not observed. Mitotic divisions of regenerative cells were confirmed using immunolabeling against BrdU and phosphohistone H3. Hemocytes associate with the midgut epithelium, accumulating between the visceral muscles and beneath the basal lamina of the midgut epithelium. Hemocytes also occur among the digestive cells of the midgut epithelium in animals infected with Rickettsia‐like microorganisms. These hemocytes presumably have an immunoprotective function in the midgut.  相似文献   

20.
Baud, A., Cuoc, C. and Alekseev, V. 222_. Ultrastructure of the digestive tract of Diacyclops thomasi (Cyclopoida, Copepoda) during different stages of encystment during a summer diapause. — Acta Zoologica (Stockholm) 85 : 181–189 Diacyclops thomasi ( Forbes, 1882 ) has a life cycle comprising a summer diapause with whole‐body encystment at the copepodid IV stage. Formed progressively, the cyst can indicate the extent of entry into diapause. In this study the ultrastructure of the midgut epithelium during encystment of CIV was compared with that of active CIV and females. In active individuals two well‐differentiated epithelial cell types were observed: vacuolar cells (B‐cells), and cells without vacuoles but with more densely packed microvilli and abundant rough endoplasmic reticulum and mitochondria (F/R cells). In encysted specimens a striking transformation of the midgut epithelial layer was noted. Only inactive nuclei with highly concentrated euchromatin and encircled by a thin rim of hyaloplasm were observed. Compartments of both urosome and especially cephalothorax displayed large lipid‐rich lacunae. At the beginning of encystment, the midgut epithelium showed an intermediate state. Changes in ultrastructure observed in the midgut epithelium of D. thomasi clearly reflect different stages of diapause, and represent clear evidence of profound reorganization, which is progressively induced by diapause in the organism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号