首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
细胞核内部的空间排布并不是随机的,而是高度动态且具细胞特异性的。在发育过程中,序列特异性的转录调控因子和表观遗传修饰因子的协同作用及其核定位与基因的表达调控密切相关。我们前期研究发现,在成肌细胞中,同源异型框蛋白Msx1通过重新分布Ezh2复合物和抑制标记H3K27me3到细胞核核周来调控靶标基因的表达,从而抑制成肌细胞的分化。这种机制是成肌细胞所特有的,还是Msx1在抑制非成肌细胞分化时也会重新分布Ezh2复合物和转录抑制性标记H3K27me3到细胞核核周,目前还不清楚。在发育过程中,Msx1可以抑制乳腺上皮细胞HC11和成骨细胞BMP2T3的分化,因此我们选取了这两种非成肌细胞做进一步探究。我们发现,在这两种非肌肉细胞中,Msx1虽也富集在细胞核核周,却并不能重新分布Ezh2和转录抑制性标记H3K27me3到细胞核核周。我们的研究表明Msx1重新分布Ezh2和抑制性标记H3K27me3到细胞核核周具有细胞类型特异性。提示我们,Msx1可能是通过不同的分子机制来调控不同类型细胞的分化。  相似文献   

2.
抑癌基因的表达抑制是肿瘤发生发展中的关键步骤,其中表观遗传学调控机制在抑制表达的过程中起重要作用。组蛋白赖氨酸甲基转移酶G9a,含有经典的SET结构域,主要介导染色质中组蛋白H3中第9位赖氨酸的一甲基化和二甲基化(mono-and di-methylation of histone H3 Lys9,H3K9me1/H3K9me2)。G9a在多种肿瘤中的表达上调,并且G9a的表达异常增高与肿瘤预后不良有密切相关性。本文就G9a的结构及其在表观遗传上的功能做综述,重点描述G9a在肿瘤发生上的作用,并分析其作为靶点对肿瘤诊断和治疗的指导性意义。  相似文献   

3.
组蛋白共价修饰作为表观遗传修饰的重要部分,主要包括乙酰化和甲酰化、甲基化、磷酸化、泛素化和SUMO化等,它们形成一个复杂的网络共同调控基因的表达,其中组蛋白甲基化修饰成为研究的热点,甲基化主要发生在赖氨酸残基上。近年来,随着有关植物组蛋白赖氨酸甲基化修饰研究的不断深入,发现其通过改变自身赖氨酸残基的甲基化状态和甲基化程度,形成转录激活或者转录抑制标记,调控基因的表达,在植物开花和逆境胁迫的响应过程中起着至关重要的作用。H3组蛋白的赖氨酸甲基化修饰能够调控FLC基因和有关抗性基因的表达,具体表现为:H3K4的三甲基化促进FLC的表达,H3K27的三甲基化则抑制FLC的表达;H3K4me3作为转录激活标记,可激活PtdIns5P基因的表达,启动响应干旱的脂质合成信号通路,响应干旱胁迫;相反,H3K27me3作为一种转录抑制标记,低水平的H3K27me3诱导COR15A和ATGOLS3基因表达,它们分别编码叶绿体低温保护蛋白Cor15am和肌醇半乳糖合成酶GOLS,以抵抗寒冷胁迫。文章主要综述了植物组蛋白赖氨酸甲基化修饰参与DNA甲基化、开花过程以及应答逆境胁迫的分子机制。  相似文献   

4.
组蛋白甲基化是发生在核小体核心组蛋白各亚基N-端肽链的一种修饰方式。在组成核小体的4种亚基中,H3亚基N-端肽链第4、9、27、36和79等位点的赖氨酸为甲基化热点,甲基化类型包括一、二、三甲基化(mono-, di-, tri-methylation)。H3K27me3是发生在组蛋白H3亚基第27位赖氨酸的三甲基化,主要发挥转录抑制的作用,参与骨骼肌的发育调控。研究表明,H3K27me3能够与骨骼肌增殖和分化的关键转录因子(如MyoD和MyoG等)及细胞周期蛋白特异性结合,并与其他表观遗传调控因子lncRNA及miRNA等互作,对骨骼肌的增殖和分化时间以及程度进行精细调控。本文系统介绍了组蛋白甲基化的类型以及H3K27甲基化和去甲基化的生物学过程,总结了目前已报道的H3K27me3在骨骼肌成肌细胞增殖和分化过程中发挥的作用,以期辅助科研工作者了解H3K27me3在骨骼肌发育过程中的作用,以及为进一步提高哺乳动物肌肉品质提供参考。  相似文献   

5.
目的:探索组蛋白H3K27me3甲基转移酶Ezh2对小鼠白色、棕色和米色脂肪细胞分化的影响。方法:构建诱导型Ezh2全身敲除小鼠(Ezh2~(flox/flox) CAGcre)并于6周龄时腹腔注射他莫昔芬诱导敲除,以同窝、同性别、相同基因型假诱导(腹腔注射玉米油)小鼠作为对照。诱导完成后在光镜下观察脂肪细胞形态,采用Western Blot法检测脂肪组织中H3K27me3、Ezh2和Ucp1的蛋白表达量。采用Realtime PCR法检测不同部位脂肪组织的脂肪分化相关基因(Pparγ、Adipoq和Fabp4)、棕色脂肪标志基因(Ucp1、Cidea和Prdm16)和米色脂肪标志基因(CD137、Tmem26和Tbx1)的表达。检测敲除组小鼠的冷耐受能力,并予以高脂饮食诱导肥胖,观察小鼠体重增长情况、诱导结束后小鼠的糖耐量和胰岛素敏感性指标。结果:Ezh2敲除小鼠Ezh2和H3K27me3的蛋白含量降低,背部棕色脂肪细胞脂滴明显小于对照组,Ucp1的基因和蛋白表达明显高于对照组(P0.05);敲除组小鼠白色脂肪细胞分化较差,米色脂肪分化增加,米色脂肪的Ucp1和Tbx1基因表达增加(P0.05)。敲除小鼠可以更好地耐受冷刺激,并抵抗高脂饮食诱导的肥胖和胰岛素抵抗。结论:Ezh2在体内促进白色脂肪细胞的分化,抑制棕色和米色脂肪细胞分化。  相似文献   

6.
选用人类胚胎干细胞系和由人类胚胎干细胞系分化来的神经干细胞系为研究对象,分析组蛋白修饰对胚胎干细胞分化过程的调控作用。得到了两种细胞系差异表达基因转录起始位点侧翼区域内八种组蛋白修饰的分布模式,以及组蛋白修饰功能簇。研究表明在两类细胞系中,八种组蛋白修饰谱分布模式一致,且呈现两种分布类型; H3K27ac,H3K4me3和H3K9ac组成的功能簇是保守的;H3K27me3,H3K36me3和H3K79me1组成的功能簇以及H3K9me3和H3K27me3组成的功能簇在胚胎干细胞向神经干细胞分化的过程中消失。结果揭示了组蛋白修饰对胚胎干细胞系向神经干细胞系分化过程的部分调控机制,为该分化过程分子调控机制的研究提供部分重要的理论基础。  相似文献   

7.
目的 TRIM28是一种异染色质相关蛋白,通过和SETDB1、HP1相互作用参与H3K9me3修饰的建立,本文旨在更深入地研究TRIM28的相关功能。方法 本文利用CRISPR/Cas9技术、染色质免疫共沉淀技术、免疫印迹技术和实时荧光定量PCR技术,建立HEK293F Trim28基因敲除细胞系,分析一系列实验数据结果。结果 Trim28主要抑制内源表达水平较低的基因转录,进一步分析发现Trim28调控锌指蛋白家族基因和原钙黏蛋白β家族基因的转录。在Trim28敲除细胞系中,锌指蛋白家族基因H3K27ac修饰、H3K4me1修饰和H3K4me3修饰都显著上升,H3K9me3修饰下降。原钙黏蛋白β家族基因的H3K4me3修饰显著上升,H3K9me3修饰下降。结论 这些结果提示TRIM28通过改变染色质的开放程度调控锌指蛋白和原钙黏蛋白β家族基因的转录,为更深入研究TRIM28的功能提供了新的思路。  相似文献   

8.
组蛋白甲基化是一种重要的表观遗传学修饰,在基因表达调节方面发挥着重要的作用.组蛋白H3赖氨酸27三甲基化(H3K27me3)是一种抑制性组蛋白标记,可被去甲基化酶UTX和JMJD3催化而移去甲基.UTX和JMJD3通过激活HOX基因而参与细胞分化和多能细胞抑制过程.在多种肿瘤中检测到UTX和JMJD3突变或表达下降,同时多种基因启动子区H3K27me3含量增多.UTX和JMJD3均被看作肿瘤抑制基因,其中UTX调节了RB依赖的细胞命运控制,而JMJD3通过激活INK4b-ARF-INK4a位点而参与了癌基因诱导的衰老.组蛋白H3K27去甲基化酶与肿瘤发生的研究使我们对癌症发展过程有了更好的理解,同时也为癌症诊断和治疗提供了新靶点.  相似文献   

9.
组蛋白赖氨酸甲基转移酶2D (histone-lysine N-methyltransferase 2D, KMT2D)作为主要的组蛋白3第4位赖氨酸(H3K4)甲基转移酶,在调控胚胎发育、组织分化、代谢和肿瘤抑制方面发挥重要作用。在小鼠体内,敲除Kmt2d会导致严重的心脏发育缺陷最终造成胚胎期死亡。低氧诱导因子-1α(hypoxia-inducible factor 1α, HIF-1α)作为调节细胞应对低氧的关键转录因子,能够调控多种下游基因转录。有相关研究揭示,表观遗传调控者能够调节HIF-1α的稳定性和活性。同样,作为表观遗传调控者的组蛋白甲基转移酶KMT2D是否参与低氧条件下HIF-1α对下游基因的调控,目前仍未知。在本研究中,观察在Kmt2d正常或缺乏的情况下,心肌细胞H9c2对低氧环境的应答反应。结果显示,与常氧条件相比,低氧状态下HIF-1α、组蛋白乙酰化酶P300、KMT2D及其介导的H3K4一甲基化(H3K4 mono-methylation, H3K4me1)的蛋白质水平增加(P0.05);HIF-1α下游基因血管内皮生长因子(vascular endothelial growth factor, Vegf)的mRNA表达水平明显上调(P0.01)。染色质免疫共沉淀实验(chromatin immunoprecipitation assay, ChIP-qPCR)检测结果显示,H3K4me1和组蛋白3第27位赖氨酸乙酰化(histone 3 lysine 27 acetylation, H3K27ac)在Vegf基因启动子区域的结合丰度明显增加(P0.05)。低氧条件下沉默Kmt2d之后,H3K4me1蛋白水平和Vegf的mRNA表达下降(P0.05)。本研究表明,低氧条件下KMT2D参与调控HIF-1α和下游基因Vegf的表达。  相似文献   

10.
为了分析比较甲基转移酶G9a和组蛋白H3K9me2修饰在胶质瘤干细胞与非干细胞中存在的差异,筛选出维持胶质瘤干细胞干性的相关基因。通过G9a抑制剂促进U87细胞成球和过表达G9a促进U87细胞分化的方法,培养了成球的胶质瘤干细胞和贴壁的非干细胞,这两种细胞的CD133表达差异明显。再利用H3K9me2抗体通过Ch IP-seq技术比较H3K9me2修饰在干细胞组与非干细胞组中的差异,在存在差异的基因中,对TSS±2 000 bp范围内的基因进行了GO分析,并随机选出10个转录因子进行QPCR验证,结果与Ch IP-seq实验基本一致。  相似文献   

11.
组蛋白赖氨酸甲基转移酶2D (histone-lysine N-methyltransferase 2D, KMT2D) 作为主要的组蛋白3第4位赖氨酸 (H3K4) 甲基转移酶,在调控胚胎发育、组织分化、代谢和肿瘤抑制方面发挥重要作用。在小鼠体内,敲除Kmt2d会导致严重的心脏发育缺陷最终造成胚胎期死亡。低氧诱导因子-1α (hypoxia-inducible factor 1α, HIF-1α) 作为调节细胞应对低氧的关键转录因子,能够调控多种下游基因转录。有相关研究揭示,表观遗传调控者能够调节HIF-1α的稳定性和活性。同样,作为表观遗传调控者的组蛋白甲基转移酶KMT2D是否参与低氧条件下HIF-1α对下游基因的调控,目前仍未知。在本研究中,观察在Kmt2d正常或缺乏的情况下,心肌细胞H9c2对低氧环境的应答反应。结果显示,与常氧条件相比,低氧状态下HIF-1α、组蛋白乙酰化酶P300、KMT2D及其介导的H3K4一甲基化 (H3K4 mono-methylation, H3K4me1)的蛋白质水平增加 (P<0.05);HIF-1α下游基因血管内皮生长因子 (vascular endothelial growth factor, Vegf) 的mRNA表达水平明显上调 (P<0.01)。染色质免疫共沉淀实验 (chromatin immunoprecipitation assay, ChIP-qPCR) 检测结果显示,H3K4me1和组蛋白3第27位赖氨酸乙酰化 (histone 3 lysine 27 acetylation, H3K27ac) 在Vegf基因启动子区域的结合丰度明显增加 (P<0.05)。低氧条件下沉默Kmt2d之后,H3K4me1蛋白水平和Vegf的mRNA表达下降 (P<0.05)。本研究表明,低氧条件下KMT2D参与调控HIF-1α和下游基因Vegf的表达。  相似文献   

12.
组蛋白赖氨酸甲基转移酶2D (histone-lysine N-methyltransferase 2D, KMT2D) 作为主要的组蛋白3第4位赖氨酸 (H3K4) 甲基转移酶,在调控胚胎发育、组织分化、代谢和肿瘤抑制方面发挥重要作用。在小鼠体内,敲除Kmt2d会导致严重的心脏发育缺陷最终造成胚胎期死亡。低氧诱导因子-1α (hypoxia-inducible factor 1α, HIF-1α) 作为调节细胞应对低氧的关键转录因子,能够调控多种下游基因转录。有相关研究揭示,表观遗传调控者能够调节HIF-1α的稳定性和活性。同样,作为表观遗传调控者的组蛋白甲基转移酶KMT2D是否参与低氧条件下HIF-1α对下游基因的调控,目前仍未知。在本研究中,观察在Kmt2d正常或缺乏的情况下,心肌细胞H9c2对低氧环境的应答反应。结果显示,与常氧条件相比,低氧状态下HIF-1α、组蛋白乙酰化酶P300、KMT2D及其介导的H3K4一甲基化 (H3K4 mono-methylation, H3K4me1)的蛋白质水平增加 (P<0.05);HIF-1α下游基因血管内皮生长因子 (vascular endothelial growth factor, Vegf) 的mRNA表达水平明显上调 (P<0.01)。染色质免疫共沉淀实验 (chromatin immunoprecipitation assay, ChIP-qPCR) 检测结果显示,H3K4me1和组蛋白3第27位赖氨酸乙酰化 (histone 3 lysine 27 acetylation, H3K27ac) 在Vegf基因启动子区域的结合丰度明显增加 (P<0.05)。低氧条件下沉默Kmt2d之后,H3K4me1蛋白水平和Vegf的mRNA表达下降 (P<0.05)。本研究表明,低氧条件下KMT2D参与调控HIF-1α和下游基因Vegf的表达。  相似文献   

13.
组蛋白赖氨酸甲基化是表观遗传调控的重要机制之一。组蛋白H3的K4、K9、K27、K36、K79和H4的K20均可被特定的赖氨酸甲基转移酶甲基化。人类、果蝇、酿酒酵母和裂殖酵母中已鉴定出多种赖氨酸甲基转移酶,并作了生化和遗传学研究,以确定其潜在的生物功能。H3K4、H3K36和H3K79甲基化参与基因转录激活,而H3K9、H3K27和H4K20的甲基化则抑制基因转录。此外X染色体失活也与特定赖氨酸的甲基化相关。组蛋白各位点赖氨酸的甲基化参与生长、发育和病变。最后,文章评述了"组蛋白密码"假说,指出了目前的研究方向,并探讨了表观遗传机制与获得性遗传的关系。  相似文献   

14.
组蛋白赖氨酸甲基化在表观遗传调控中起着关键作用。组蛋白甲基转移酶G9a(又称作常染色质组蛋白赖氨酸N-甲基转移酶2(euchromatic histone-lysine N-methyltransferase 2,EHMT2))含经典的SET结构域,是常染色质主要的甲基转移酶之一,可以甲基化组蛋白H3K9、H3K27和H1bK26等。此外,G9a也可以直接甲基化一些非组蛋白,并与DNA甲基化密切相关。G9a功能紊乱可以导致胚胎发育异常、免疫系统及神经系统发育障碍、甚至癌症的发生发展。  相似文献   

15.
在肿瘤发生过程中,组蛋白赖氨酸去甲基化酶(LSD1)的表达失调是一个重要标志。LSD1能够于组蛋白H3的N端与H3K4me2/1和H3K9me2/1相互作用,并使其去甲基化,从而调控多种不同的生理过程。同时,LSD1表达水平变化还与多种基因如p53、DNMT1和EZH2等的表达水平相关联,在胚胎发育、细胞分化和肿瘤增殖转移过程中起重要作用。  相似文献   

16.
表观遗传学主要包括DNA甲基化、组蛋白修饰和非编码RNA,组蛋白甲基化作为组蛋白修饰中的一种重要修饰,在植物体的发育和环境适应中发挥着重要作用。组蛋白甲基化主要发生在赖氨酸残基上,同时根据不同的赖氨酸位点和每个赖氨酸位点甲基化程度的不同,形成了不同的赖氨酸甲基化修饰。根据对基因的不同功能,通常将组蛋白赖氨酸甲基化修饰分为2大类:(1)能够促进基因表达的,如H3K4me3和H3K36me3;(2)能够抑制基因表达的,如H3K9me2和H3K27me3。不同的组蛋白赖氨酸甲基化去甲基化过程需要相应的阅读(reader)、书写(writer)和擦除(eraser)3种蛋白。同时,组蛋白赖氨酸甲基化的遗传性质目前还不是很清楚。综述了植物中组蛋白赖氨酸甲基化建立与去除过程,以及对组蛋白赖氨酸甲基化可遗传性的探讨。  相似文献   

17.
组蛋白H3第79位赖氨酸甲基化(H3K79me)修饰有单甲基、双甲基及三甲基3种形式,是常染色质的标志.然而,对于组蛋白H3K79三种甲基化各自在基因转录、DNA损伤修复中所起的作用尚不十分清楚.本研究以8-氯腺苷(8-Cl-Ado)为DNA双链断裂(DNA double-stranded breaks,DSB)诱导剂,采用Western 印迹,在人肺癌细胞H1299检测出了DNA修复分子NBS1、细胞周期检验点相关分子p21,并发现H3K79me1、H3K79me2和H3K79me3三种甲基化修饰的组蛋白明显增加;染色质免疫共沉淀结合实时定量PCR实验显示,只H3K79me2与DNA损伤检验点分子p21、DNA修复分子NBS1的启动子区域相结合,说明H3K79双甲基化修饰与这些基因的转录激活有关.结果提示,在8-氯腺苷引起 DSB时,是H3K79me2、而不是H3K79me1和H3K79me3参与NBS1和p21基因转录激活时的染色质重塑.8-氯腺苷诱导H3K79双甲基化增强、促进H3K79me2所在染色质区域的NBS1和p21基因转录激活可能是8-Cl-Ado抑制肿瘤细胞生长作用机制之一.  相似文献   

18.
PI3K/AKT信号通路调控Myogenin和MCK基因的表达   总被引:1,自引:0,他引:1  
李晶  张云生  李宁  胡晓湘  石国庆  刘守仁  柳楠 《遗传》2013,35(5):637-642
骨骼肌分化过程受多个信号通路调控, PI3K/AKT信号通路是其中最重要的信号转导通路之一。PI3K/AKT信号通路可以调控骨骼肌分化, 但在染色质水平上的调控机制还不是很清楚。文章以小鼠成肌细胞(C2C12)为研究材料, 采用免疫印迹、染色质免疫共沉淀(Chromatin immunoprecipitation, ChIP)、定量PCR (Q-PCR)的方法研究PI3K/AKT信号通路调控Myogenin和MCK基因的表达。研究发现, C2C12细胞分化过程中添加PI3K/AKT信号通路激活剂处理24 h, Myogenin和MCK蛋白表达水平显著升高, 组蛋白H3K27me3去甲基化酶UTX的表达也升高, H3K27me3在Myogenin基因启动子区和MCK基因启动子及增强子区的富集与对照组相比显著降低。用PI3K/AKT信号通路抑制剂处理, 结果相反。因此, PI3K/AKT信号通路可能通过调控组蛋白去甲基化酶UTX的表达活性改变靶基因的H3K27me3的富集进而调控骨骼肌分化。  相似文献   

19.
An YR  Xu JB  An HL 《遗传》2011,33(3):207-212
Polycomb Group(PcG)蛋白能形成Polycomb Repressive Complex 1(PRC1)和PRC2等复合体,通过一个保守且表观遗传的机制调节基因表达并控制动植物的发育。拟南芥中由VERNALIZATION2参与形成的PRC2复合体(VRN2-PRC2)在春化过程中能对主要开花抑制基因FLOWER LOCUS C(FLC)的染色质进行组蛋白甲基化修饰,形成H3K27me3(组蛋白H3第27位赖氨酸三甲基化)等转录抑制标记,从而抑制FLC转录,促进开花。虽然麦类作物的春化机理与拟南芥有较大差异,但最近的研究表明麦类作物春化过程也受PcG蛋白调控。文章对拟南芥PcG蛋白介导的春化调节机制进行综述,期望能对植物尤其是麦类作物的春化机理研究提供资料。  相似文献   

20.
染色质高级结构是基因转录调节的重要因素,染色质多重相互作用是高级结构中的一种,是多个(≥3)染色质片段在空间上相互接触而形成的紧凑结构。为了解染色质多重相互作用这类高级结构的特征及其在干细胞中分化中起到的作用,通过对Hi-C数据进行相关分析并计算基因的FPKM表达量,研究了染色质多重相互作用。分析发现:多重相互作用约占所有作用的30%,包含近70%的基因;此类作用区域的高表达基因多于低表达基因;且与组蛋白乙酰化相关性高。在分化过程中,多重作用位点数目和比例减少;位于多重作用区域的基因的表达略有降低;组蛋白乙酰化(H3K27ac和H3K23ac)在多重作用区域的减弱,而组蛋白甲基化(H3K4me3和H3K27me3)倾向于增强。结果表明,染色质多重相互作用是一种广泛存在的染色质高级结构,在干细胞分化中有重要作用,此类结构多具有H3K27ac修饰,调节基因的表达。总之,染色质多重相互作用是一种重要的基因转录调节因素,在细胞分化中具有调控作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号