首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
This report is a comprehensive fine structural analysis of the morphological changes occurring during metamorphosis of the marine hydrozoan Mitrocomella polydiademata. Five stages are recognized during metamorphosis: planulae just prior to settlement, ball and filiform stages, immature polyps, and primary feeding polyps. Settlement and metamorphosis of cnidarian planulae involve such changes as ciliary arrest, discharge of nematocytes, secretion of glandular cells, differentiation of cells, and changes in cell and body shape.  相似文献   

2.
Coral planulae settle, then metamorphose and form polyps. This study examined the morphological process of metamorphosis from planulae into primary polyps in the scleractinian corals Acropora nobilis and Acropora microphthalma, using the cnidarian neuropeptide Hym-248. These two species release eggs that do not contain Symbiodinium. The mode of acquisition of freshly isolated Symbiodinium (zooxanthellae) (FIZ) by the non-symbiotic polyp was also examined. Non-Hym-248 treated swimming Acropora planulae did not develop blastopore, mesenteries or coelenteron until the induction of metamorphosis 16 days after fertilization. The oral pore was formed by invagination of the epidermal layer after formation of the coelenteron in metamorphosing polyps. At 3 days after settlement and metamorphosis, primary polyps exposed to FIZ established symbioses with the Symbiodinium. Two–four days after exposure to FIZ, the distribution of Symbiodinium was limited to the gastrodermis of the pharynx and basal part of the polyps. Eight–ten days after exposure to FIZ, Symbiodinium were present in gastrodermal cells throughout the polyps.  相似文献   

3.
Summary The scyphozoan medusaCassiopea andromeda forms free swimming planulae and buds that metamorphose into tentacle bearing sedentary polyps. About 30% of the planulae and 7% of the buds undergo such metamorphosis within 30 days in sterile natural seawater from the Red Sea. In sterile artificial sea water devoid of any organic substances, normal metamorphosis does not take place. This indicates that both the planulae and the buds require organic morphogenetic inducers present in the sea to settle and metamorphose. The addition of cholera toxin or thyrotropin to preparations of sterile artificial sea water, induced normal metamorphosis. These inducers enhanced the rate of metamorphosis and up to 100% of the planulae and buds formed polyps within 2–18 days. We conclude that our preparations of cholera toxin and thyrotropin mimic the action of natural inducers.  相似文献   

4.
Summary

The embryonic origin of the nervous system in Phialidium gregarium was investigated. Entoderm-free planulae, surgically produced by bisection at mid-gastrulation, and normal planulae were examined by light and electron microscopy to determine their cellular composition. The cell types that occur in the epidermis of the normal planula were described. The entoderm-free planulae were found to be devoid of interstitial cells and their derivatives, the nematocytes and ganglion cells. Neurosensory cells were present, however, indicating that they are derivatives of the ectodermal epithelium.

The role of nerve elements in the initiation of metamorphosis was also examined. Normal and entoderm-free planulae treated for four hours with 0.4% colchicine at two, three, or four days of development fail to undergo cesium-induced metamorphosis. Since such treatment in other hydrozoans eliminates interstitial cells and their derivatives [1-3], it might be argued that ganglion cells are necessary to initiate metamorphosis. The observation that entoderm-free planulae, devoid of interstitial cell derivatives, are capable of responding to induction by bacteria or cesium, however, indicates that in Phialidium the colchicine effect is on other cell types. The results are compared with findings for other Cnidaria.  相似文献   

5.
Eggs of medusae develop into lecithotrophic planulae that undergo metamorphosis at different ages to form polyps. As planulae age they decrease in size as their yolk stores are utilized. The planulae of most Phialidium medusae develop into polyps where there is a decrease in the size of the holdfast region and a relative increase in the size of the hydranth region as they age. These changes occur independently of the decrease in planula size. In planulae with a decrease in the size of the holdfast region and an increase in the size of the hydranth-forming region there was a 50% decline in polyps that successfully stayed attached to the substrate after metamorphosis. These aged planulae produced an initial hydranth with the same number of tentacles as polyps from full-sized young planulae while young half-sized planulae produced hydranths where the tentacle number was smaller. The first phase of polyp colony growth with a small initial hydranth was slower than growth of a colony with a larger initial hydranth. Predation during this period led to more death in colonies with a small initial hydranth. The decline in successful attachment in aged planulae was not offset by the higher rate of growth and a smaller window of time where predation leads to death, suggesting that this age-related developmental change in planulae was not adaptive.  相似文献   

6.
Clavularia hamra Gohar, 1948 is a common octocoral on the reefs of the Gulf of Eilat (northern Red Sea). Reproductive biology of C. hamra was studied for two years. Direct observations of spawning were conducted in situ and in aquaria. Cleavage of eggs and further embryo metamorphosis into mature planulae were examined by scanning electron microscopy and histological sections. Clavularia hamra is dioecious. Young oocytes appear annually in September, gradually grow in size and attain maturity within 11 months. The main spawning event of the population is highly synchronized, occurring on a single night each year between the last quarter and the new moon in mid summer. The released orange eggs are held together by mucus and remain attached amongst the polyps on the outside of the female colonies. Twelve hours after spawning, the young embryos have blastomeres of equal size with numerous microvilli on their external surface. Due to unequal cleavage, bizarre embryos are also formed. By 48 h a blastopore is visible, indicating that a gastrula is developing. Eight days after spawning mature planulae are observed. The external mode of embryo development on the surface of the parent colony reduces dispersal of the planulae. However, this reproductive feature enhances formation of locally dense populations of C. hamra, with distinct habitat preferences.  相似文献   

7.
Adult medusae of Carukia barnesi were collected near Double Island, North Queensland Australia. From 73 specimens, 8 males and 15 females spawned under laboratory conditions. These gametes were artificially mixed which resulted in fertilized eggs. Post fertilization, most eggs developed to an encapsulated planula stage and then paused for between six days and six months prior to hatching as ciliated planulae. The paused stage planulae were negatively buoyant and adhered to substrate. The first planula was produced six days post fertilization, lacked larval ocelli, remained stationary, or moved very slowly for two days prior to metamorphosis into primary polyps. Mature polyps reproduced through asexual reproduction via lateral budding producing ciliated swimming polyps, which in turn settled and developed into secondary polyps. Medusae production for this species was in the form of monodisc strobilation, which left behind polyps able to continue asexual reproduction.  相似文献   

8.
The planulae of almost all investigated cnidarian species possess neuron‐like cells. The distribution of these cells is usually uneven throughout the long axis of the planula. The majority of these cells are located in the anterior half of the planula body. Scyphozoan planulae, as well as anthozoan planulae, have a sensory structure at the anterior pole called an apical organ, which is believed to take part in metamorphosis induction. Hydrozoan planulae also possess sensory cells. It has been previously shown in several cnidarian larvae that their neuronal cells contain the neurotransmitter, serotonin. The present study describes the peculiarities of serotonin‐like immunoreactive cells in Aurelia aurita (Scyphozoa) and Gonothyraea loveni (Hydrozoa) planulae. We show that several cells in the presumptive apical organ of A. aurita are immunoreactive to antibodies against serotonin, while G. loveni planulae have an accumulation of serotonin‐positive cells near the anterior pole. Additional serotonin‐like immunoreactive cells are found in the lateral ectoderm of both planulae. Treatment of A. aurita and G. loveni planulae with serotonin or its blockers show that serotonin is likely involved in the initiation of planula settlement.  相似文献   

9.
Planula larvae of Halocordyle disticha were examined for the presence of catecholamines using a multipronged approach. Transmission electron micrographs of planular sensory cells and ganglionic cells demonstrated dense-cored vesicles and electron-dense droplets in both cell types. These vesicles and droplets were similar in morphology to catecholamine-containing granules of vertebrates. Planulae processed with the SPG histofluorescence technique, specific only for catecholamines, exhibited blue-green fluorophores which were most prominent in the anterior ectoderm. Such fluorescence was associated with sensory cells, ganglionic cells and the neural plexus. Pretreatment of planulae with neuropharmacological agents which prevent reuptake (reserpine) or cause release (nicotine, ephedrine) of catecholamines caused a diminution of the fluorophores. Pretreatment of animals with 6-hydroxydopamine, which causes destruction of catecholamine-containing cells, prevented any fluorescent response. Ultrastructural examination of reserpine-treated planulae revealed a dramatic reduction in the populations of dense-cored vesicles and electron-dense droplets. Furthermore, many of the vesicles and droplets remaining in reserpinized animals appeared washed out, i.e. stained faintly. Exposure of planulae to exogenous norepinephrine caused premature, rapid metamorphosis and produced polyps with slightly stunted tentacles and pitted, irregular hypostomes. Exposure of planulae to nicotine caused similar effects. Rearing planulae in sea water containing alpha blockers, phentolamine and tolazoline, had no discernible effect on behaviour (motility, phototactic response) or gross morphology. However, planulae raised in sea water containing propranolol, a beta blocker, ceased all movement, became tack-shaped and died within 72 h. These results meet multiple criteria for the identification of catecholamines in hydrozoan planulae and suggest that such catecholamines may function as neurotransmitters, neurohormones or neuromodulators during larval development.  相似文献   

10.
We report that planulae produced by Tubastraea coccinea can metamorphose and aggregate in groups of up to eight polyps in the water column, without previous settlement on benthic substrate. We also evaluated the survival of propagules to test whether different levels of aggregation allowed for longer planktonic life and, therefore, higher dispersal potential. Our results show that pelagic polyps live longer than planulae, probably because they can feed and meet the presumably high-energy demands of swimming. Clusters of two or more individuals lived longer than solitary polyps. However, mortality did not differ between small (2–3 polyps) and large (4–8 polyps) clusters, suggesting the existence of an upper limit to cluster size. Most swimming clusters (80 %) remained alive after 6 months, suggesting that pelagic metamorphosis and cluster formation can be a key life-history feature increasing dispersal potential, population connectivity, and the colonization of new habitats in this invasive species.  相似文献   

11.
The induction of larval attachment and metamorphosis of benthic marine invertebrates is widely considered to rely on habitat specific cues. While microbial biofilms on marine hard substrates have received considerable attention as specific signals for a wide and phylogenetically diverse array of marine invertebrates, the presumed chemical settlement signals produced by the bacteria have to date not been characterized. Here we isolated and fully characterized the first chemical signal from bacteria that induced larval metamorphosis of acroporid coral larvae (Acropora millepora). The metamorphic cue was identified as tetrabromopyrrole (TBP) in four bacterial Pseudoalteromonas strains among a culture library of 225 isolates obtained from the crustose coralline algae Neogoniolithon fosliei and Hydrolithon onkodes. Coral planulae transformed into fully developed polyps within 6 h, but only a small proportion of these polyps attached to the substratum. The biofilm cell density of the four bacterial strains had no influence on the ratio of attached vs. non-attached polyps. Larval bioassays with ethanolic extracts of the bacterial isolates, as well as synthetic TBP resulted in consistent responses of coral planulae to various doses of TBP. The lowest bacterial density of one of the Pseudoalteromonas strains which induced metamorphosis was 7,000 cells mm(-2) in laboratory assays, which is on the order of 0.1-1% of the total numbers of bacteria typically found on such surfaces. These results, in which an actual cue from bacteria has been characterized for the first time, contribute significantly towards understanding the complex process of acroporid coral larval settlement mediated through epibiotic microbial biofilms on crustose coralline algae.  相似文献   

12.
Hydroid planulae metamorphose in response to an inducing external stimulus, usually a bacterial cue. There is evidence that neurotransmitters participate in the signal transduction pathway of hydroid metamorphosis. Eudendrium racemosum is a colonial hydroid common in the Mediterranean Sea. It lacks the medusa stage and the planulae develop on female colonies during the fertile season. In this work, serotonin (5-HT) was localized in some planula ectodermal cells. Co-localization of serotonin and beta-tubulin suggested that 5-HT was present in sensory nervous cells and in different ectodermal cells. To investigate the role of neurotransmitters in metamorphosis, E. racemosum planulae were treated with serotonin and dopamine and with agonists and antagonists of the corresponding receptors. Serotonin and a serotonin receptor agonist induced metamorphosis, while a 5-HT receptor antagonist inhibited it. Dopamine and all dopaminergic drugs used did not show any significant effect on the onset of metamorphosis. Results from this work showed that 5-HT could stimulate metamorphosis in E. racemosum planulae in the presence of a natural inducer. A mechanism by which this neurotransmitter could act in this phase is proposed.  相似文献   

13.
Summary Patterning processes during embryonic development of Hydractinia echinata were analysed for alterations in morphology and physiology as well as for changes at the cellular level by means of treatment with proportioning altering factor (PAF). PAF is an endogenous factor known to change body proportions and to stimulate nerve cell differentiation in hydroids (Plickert 1987, 1989). Applied during early embryogenesis, this factor interferes with the proper establishment of polarity in the embryo. Instead of normal shaped planulae with one single anterior and one single posterior end, larvae with multiple termini develop. Preferentially, supernumerary posterior ends, which give rise to polyp head structures during metamorphosis, form while anterior ends are reduced. The formation of such polycaudal larvae coincide with an increase in the number of interstitial cells and their derivatives at the expense of epithelial cells. Treatment of further advanced embryonic stages causes an increase in length, presumably due to the general stimulation of cell proliferation observed in such embryos. Also, the spatial arrangement of cells (i.e. cells in proliferation and RFamide (Arg-Phe-amide immunopositive nerve cells) is altered by PAF. Larvae that develop from treated embryos display altered physiological properties and are remarkably different from normal planulae with respect to their morphogenetic potential: (1) Larvae lose their capacity to regenerate missing anterior parts; isolated posterior larva fragments form regenerates of a bicaudal phenotype. (2) In accordance with the frequently observed reduction of anterior structures, the capacity to respond to metamorphosis-inducing stimuli decreases. (3) The morphogenetic potential to form basal polyp parts is found to be reduced. In contrast, the potential to form head structures during metamorphosis increases, since primary polyps with supernumerary hypostomes and tentacles metamorphose from treated animals.  相似文献   

14.
In the metagenetic life-cycle of the scyphozoan Cassiopea xamachana metamorphosis of planula-larvae or larva-like buds to polyps is triggered by specific external cues which are transmitted inside the larva or bud where internal signals finally coordinate the initiation of metamorphosis. This study deals with an endogenous metamorphosis inducer present in planulae and buds of Cassiopea. The inductive cue is localized in the basal part of the buds and can be characterized as a peptide with an apparent molecular weight of about 7,000 Da. Further purification was performed via reversed phase HPLC on a C18 column. Additional inhibitor assays revealed that protein kinase C and PI3 kinase, two known elements of the metamorphosis-inducing signal transduction cascade in Cassiopea, may act downstream of the endogenous inducing peptide.  相似文献   

15.
Summary Both the natural metamorphic stimulus (an unidentified bacterial product) and an artificial trigger of metamorphosis (Cs+) cause large calcium transients in planula cells of the hydrozoanMitrocomella polydiademata. When these transients are inhibited with calcium channel blockers, metamorphosis is also inhibited. All cells of theMitrocomella planula contain a calcium-specific photoprotein. The cells where the calcium transients occur during natural- and Cs+-induced metamorphosis have been visualized in normal and entoderm free planulae that lack ganglion cells, using a compound microscope coupled to an image intensifier and video camera. During bacteria- and Cs+-induced metamorphosis, groups of contiguous cells, occupying from about 10% to the entire visible surface of the planula, simultaneously exhibit calcium transients. When the cells that initiate a transient comprise only part of the planula surface, the calcium transient frequently propagates and can eventually involve every cell on the visible planula surface. There is no special site on the planula surface where calcium transients are more apt to be initiated. There is no indication that propagation of a flash in one direction is more likely than in another. The velocity of propagation is virtually the same in all directions. The only feature of the spatial distribution of bacteria- and Cs+-induced calcium transients that appears to be necessary for the induction of metamorphosis is that at least one transient must involve all of the surface cells of the planula. The spatial behavior of calcium transients is the same in entoderm free planulae (lacking ganglion cells) as in normal planulae. The propagation of these calcium transients most probably occurs via epithelial conduction. This metamorphic step involving calcium transients is probably the intercellular communication system that informs the cells of the planula that metamorphosis will commence.Metamorphosis inMitrocomella planulae can also be induced with phorbol esters. Calcium transients do not occur during phorbol ester-induced metamorphosis, indicating that they act at a different point in the metamorphic pathway. Calcium channel blockers do not inhibit phorbol ester-induced metamorphosis. Inhibitors of protein kinase-C, inhibit both phorbol ester-induced metamorphosis and Cs+- and bacteria-induced metamorphosis, but have no effect on the calcium transients induced by Cs+. This indicates that the calcium transient mediated step in the metamorphic pathway occurs prior to protein kinase-C activation. Calcium transients probably play a major role in activating protein kinase-C.  相似文献   

16.
Hydractinia echinata and Aurelia aurita produce motile larvae which undergo metamorphosis to sessile polyps when induced by external cues. The polyps are found at restricted sites, A. aurita predominantly on rocks close to the shore, H. echinata on shells inhabited by hermit crabs. It has been argued that the differential distribution of the polyps in their natural environment largely reflects the distribution of the natural metamorphosis-inducing cues. In the case of H. echinata, bacteria of the genus Alteromonas were argued to meet these conditions. We found that almost all substrates collected in the littoral to induce metamorphosis in H. echinata, and several bacterial strains isolated from the sea, including the common E. coli, induce metamorphosis efficiently. In A. aurita metamorphosis may be induced by the water–air interface, whereby metamorphosis precedes (final) settlement. Received: 7 December 1998 / Accepted: 8 July 1999  相似文献   

17.
Shlesinger  Y.  Loya  Y. 《Hydrobiologia》1991,(1):101-108
Two Red Sea faviid species, Favia favus and Platygyra lamellina spawn eggs and sperm once a year, during the summer. External fertilization occurs 0.5 h after spawning, and mobile gastrulae appear 20 h later. Four stages in the early ontogenesis of these corals are described. The slow development (2–3 months) to the polyp stage in broadcasting species is attributed to the lack of zooxanthellae in their planulae and their appearance in the primary polyp only at a later stage. Survivorship of one-month-old primary polyps is ca 0.21% and 0.25% in F. favus and P. lamellina respectively, from the populations of 2–9-day-old planulae. Despite these low rates of survival, both species form dense populations in the Gulf of Eilat.  相似文献   

18.
The life cycle of Chrysaora lactea Eschscholtz, 1829, a common species on the Brazilian coast, is described. Mature medusae were collected and isolated in a planktonkreisel, whereupon planulae appeared after 1–2 days. These planulae settled and metamorphosed into polyps. Fully developed scyphistomae typically possessed 16 tentacles, and on strobilation produced from 2 to 10 ephyrae. The ephyrae were transparent and had characteristic nematocyst warts on the exumbrella. Tentacles first appeared near the margin on the subumbrella. Ephyrae and young medusae were maintained in laboratory conditions up to 7 months.  相似文献   

19.
20.
The planula larva of the hydroid Clava multicornis (Forskål, 1775) has a complex nervous system, characterized by the presence of distinct, anteriorly concentrated peptidergic populations of amidated neurons, presumably involved in the detection of environmental stimuli and metamorphic signals. Differently from other hydrozoan larvae in C. multicornis planulae GLW-positive cells with putative sensory role have a peculiar dome-shaped forefront organization, followed by a belt of RF-positive nerve cells. By immunohistochemistry, we investigated the transformation of the peptidergic (GLW-amide and RF-amide) larval neuroanatomy at different stages of metamorphosis and the subsequent development of the primary polyp nervous system. By terminal transferase-mediated dUTP nick end-labeling assay, apoptotic nuclei were first identified in the anterior pole of the settled larva, in the same region occupied by GLW-amide positive putative sensory cells. In primary polyps, GLW-amide positive signals first encircled the hypostome area, later extending downwards along the polyp column or upwards over the hypostome dome, whereas RF-amide positive sensory cells initially appeared at the tentacles base to later extend in the tentacles and the polyp column. In spite of the possession of distinct neuroanatomies, different cnidarian planulae may share common developmental mechanisms underlying metamorphosis, including apoptosis and de novo differentiation. Our data confirm the hypothesis that the developmental dynamics of tissue rearrangements may be not uniform across different taxa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号