首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The objective of this study was to determine whether the presence of gastrointestinal symptoms, as defined by item 12 of Hamilton-Rating-Scale for Depression, is related to kinetic characteristics of platelet-5HT uptake in patients with major depression.The clinical picture of depression in patients with severe form of appetite loss with difficulties of eating (item 12 = 2) and weight loss was characterized by the combination of depressed mood with somatic symptoms of anxiety, sleep disturbances, decreased activity and the presence of nausea. The high frequency of relatively low Vmax and Km of 5HT uptake in this group (n = 12), all in the lower range of controls, resulted in significantly lower mean values compared with patients without gastrointestinal symptoms (n = 16; item 12 = 0) or 57 healthy subjects (Vmax = 1.36 +/- 0.27 vs. 2.14 +/- 0.85 vs. 2.05 +/- 0.74 nMol 5HT/10(9)plat.x min; Km = 382 +/- 68 vs. 467 +/- 94 vs. 492 +/- 123 nM respectively). Although our finding needs confirmation, it seems that in the research for serotonergic mechanisms in major depression, it makes sense to look at depressed patients with or without somatic symptoms separately. Based on findings in 5HT transporter knock-out mice (J. Neurosci. 15 (2001) 6348), we assume that the low apparent Vmax of platelet-5HT uptake reflects the low expression of 5HT transporter not only in platelets, but also in the gut mucosa and enteric serotonergic neurons, which probably increases the risk of typical gastrointestinal symptoms such as appetite loss and nausea occurring in some depressed patients.  相似文献   

2.
Plasma serotonin levels and the platelet serotonin transporter   总被引:1,自引:0,他引:1  
Serotonin (5HT) is a platelet-stored vasoconstrictor. Altered concentrations of circulating 5HT are implicated in several pathologic conditions, including hypertension. The actions of 5HT are mediated by different types of receptors and terminated by a single 5HT transporter (SERT). Therefore, SERT is a major mechanism that regulates plasma 5HT levels to prevent vasoconstriction and thereby secure a stable blood flow. In this study, the response of platelet SERT to the plasma 5HT levels was examined within two models: (i) in subjects with chronic hypertension or normotension; (ii) on platelets isolated from normotensive subjects and pretreated with 5HT at various concentrations. The platelet 5HT uptake rates were lower during hypertension due to a decrease in Vmax with a similar Km; also, the decrease in Vmax was primarily due to a decrease in the density of SERT on the platelet membrane, with no change in whole cell expression. Additionally, while the platelet 5HT content decreased 33%, the plasma 5HT content increased 33%. Furthermore, exogenous 5HT altered the 5HT uptake rates by changing the density of SERT molecules on the plasma membrane in a biphasic manner. Therefore, we hypothesize that in a hypertensive state, the elevated plasma 5HT levels induces a loss in 5HT uptake function in platelets via a decrease in the density of SERT molecules on the plasma membrane. Through the feedback effect of this proposed mechanism, plasma 5HT controls its own concentration levels by modulating the uptake properties of platelet SERT.  相似文献   

3.
Kinetics of 3H serotonin accumulation into slices from hypothalamus have been compared in adult, puppy and foetus rat. In 15 days-old, as in adult rat, there are two components of 5 HT accumulation corresponding to the low and high affinity transport systems. For this latter, Km and Vmax values are much higher in adult than in 15 days old rat (in adult, Km=1,3 X 10(-7) and Vmax=0,33 X 10(-10); in 15 days old rat, Km=0,5 X 10(-7) and Vmax=0,125 X 10(-10)). On the opposite, in the 7 days old rat and in the 21 days old foetus, it is only possible to arbitrarely define one uptake system corresponding to the following apparent values: in the 7 days old rat, Km= 5 X 10(-7) and Vmax=2 X 10(-10), in the foetus, Km=0,2 X 10(-7) and Vmax=0,15 X 10(-10). These results showed important developmental differences in affinity of 3H serotonin to hypothalamus. The low and high affinity uptake systems existing in adult are only individualized in the 15 days old little rat.  相似文献   

4.
The in vitro uptake of [3H]5HT was investigated in tissue slices of the cestode Hymenolepis diminuta. A concentrative, sodium sensitive, high affinity uptake mechanism (Km 1.43 X 10(-6) M; Vmax 222 fmoles/mg wet wt/min), together with a sodium insensitive component (linear up to 5 X 10(-6) M) were present. In the presence of 2-nitroimipramine the sodium sensitive component was significantly suppressed (Vmax 33 fmoles/mg/wet wt/min) although the Km (1.37 X 10(-6) M) was not affected. Nitroimipramine showed an IC50 of approximately 2 X 10(-6) M. The sodium insensitive component was not affected by nitroimipramine. Biogenic amines and related indoleamines were weak inhibitors of the sodium sensitive and sodium insensitive components of 5HT uptake. The tricyclic antidepressants and fluoxetine were effective inhibitors of the sodium sensitive component of 5-HT uptake; receptor ligands were weak inhibitors or without effect. The metabolism of [3H]5HT in tissue slices of H. diminuta was examined by HPLC. The role of the sodium sensitive uptake and metabolism of 5HT in terms of inactivation and recycling of neurally released 5HT and the possible importance of exogenous recruitment of 5HT are discussed.  相似文献   

5.
Platelet serotonin (5-HT) content and uptake were studied in male SHR and WKY at various ages. Blood was withdrawn from the carotid artery under anesthesia and 5-HT levels determined from platelet rich plasma (PRP) using a HPLC technique coupled with an electrochemical detection method. Platelet 5-HT uptake was studied by incubating PRP at 37 degrees C for 10 sec with increasing concentrations of 3H-5HT. Lineweaver- Burk plots of 3H-5HT uptake were linear suggesting simple Michaelis- Menten uptake kinetics. The SHR had more platelets than age-matched controls and consequently a higher blood circulating pool of 5-HT. Nevertheless, the 5-HT platelet levels were similar to those of their age-matched rats. The 5 week-old SHR and WKY had greater numbers of platelets and higher 5-HT platelet levels than the older rats of both strains. The affinity constants (Km) and the maximal velocities (Vmax) of platelet 5-HT uptake did not differ significantly between the 12 week- and the 6 month-old SHR and WKY. These data suggest that the SHR do not show the same impairment in platelet 5-HT metabolism as observed in essential hypertension in man.  相似文献   

6.
Na+-dependent uptake of 5-HT (5-hydroxytryptamine) into plasma membrane vesicles derived from bovine blood platelets and ATP-dependent 5-HT uptake into storage vesicles in platelet lysates were measured. Na+-dependent uptake was temperature-dependent, inhibited by imipramine and exhibited Michaelis-Menten kinetics (apparent Km, 0.12 +/- 0.02 microM; Vmax. 559 +/- 54 pmol/min per mg of protein. Halothane had no effect on Na+-dependent transport of 5-HT in plasma-membrane vesicles. ATP-dependent 5-HT transport into storage granules also exhibited Michaelis-Menten kinetics (apparent Km 0.34 +/- 0.03 microM; Vmax. 34.3 +/- 1.7 pmol/min per mg of protein) and was inhibited by noradrenaline (norepinephrine), but not by imipramine. Exposure of the granules to halothane resulted in a progressive decrease in Vmax. The results demonstrate a possible site for disruption of platelet function by anaesthetics.  相似文献   

7.
The aim of the study was to evaluate the kinetic parameters of a specific serotonin transporter (SERT) and serotonin uptake in a mentally healthy subset of patients with fibromyalgia. Platelets were obtained from 40 patients and 38 healthy controls. SERT expression and functionality were evaluated through the measurement of [3H]paroxetine binding and the [3H]serotonin uptake itself. The values of maximal membrane binding capacity (Bmax) were statistically lower in the patients than in the healthy volunteers, whereas the dissociation constant (Kd) did not show any statistically significant variations. Moreover, a decrease in the maximal uptake rate of SERT (Vmax) was demonstrated in the platelets of patients, whereas the Michaelis constant (Km) did not show any statistically significant variations. Symptom severity score (tiredness, tender points index and Fibromyalgia Impact Questionnaire) were negatively correlated with Bmax and with Vmax, and positively correlated with Km. A change in SERT seems to occur in fibromyalgic patients, and it seems to be related to the severity of fibromyalgic symptoms.  相似文献   

8.
Inorganic phosphate, amino acids and sugars are of obvious importance in lung metabolism. We investigated sodium-coupled transports with these organic and inorganic substrates in type II alveolar epithelial cells from adult rat after one day in culture. Alveolar type II cells actively transported inorganic phosphate and alanine, a neutral amino acid, by sodium-dependent processes. Cellular uptakes of phosphate and alanine were decreased by about 80% by external sodium substitution, inhibited by ouabain (30 and 41%, respectively) and displayed saturable kinetics. Two sodium-phosphate cotransport systems were characterized: a high-affinity one (apparent Km = 18 microM) with a Vmax of 13.5 nmol/mg protein per 10 min and a low-affinity one (apparent Km = 126 microM) with a Vmax of 22.5 nmol/mg protein per 10 min. Alanine transport had an apparent Km of 87.9 microM and a Vmax of 43.5 nmol/mg protein per 10 min. By contrast, cultured alveolar type II cells did not express sodium-dependent hexose transport. Increasing time in culture decreased Vmax values of the two phosphate transport systems on day 4 while sodium-dependent alanine uptake was unchanged. This study demonstrated the existence of sodium-dependent phosphate and amino acid transports in alveolar type II cells similar to those documented in other epithelial cell types. These sodium-coupled transports provide a potent mechanism for phosphate and amino acid absorption and are likely to play a role in substrate availability for cellular metabolism and in regulating the composition of the alveolar subphase. The decrease in phosphate uptake with time in culture is parallel to decrease in surfactant synthesis reported in cultured alveolar type II cells, suggesting that phosphate availability for surfactant synthesis may be accomplished by a sodium-dependent phosphate uptake.  相似文献   

9.
In human placenta, 3 beta-hydroxy-5-ene-steroid dehydrogenase and steroid 5----4-ene-isomerase, an enzyme complex found in microsomes and mitochondria, synthesizes progesterone from pregnenolone and androstenedione from fetal dehydroepiandrosterone sulfate. The dehydrogenase and isomerase activities of the mitochondrial enzyme were copurified (733-fold) using sequential cholate solubilization, ion exchange chromatography (DEAE-Toyopearl 650S), and hydroxylapatite chromatography (Bio-Gel HT). Enzyme homogeneity was demonstrated by a single protein band in SDS-polyacrylamide gel electrophoresis (monomeric Mr = 41,000), gel filtration at constant specific enzyme activity (Mr = 77,000), and a single NH2-terminal sequence. Kinetic constants were determined for the oxidation of pregnenolone (Km = 1.6 microM, Vmax = 48.6 nmol/min/mg) and dehydroepiandrosterone (Km = 2.4 microM, Vmax = 48.5 nmol/min/mg) and for the isomerization of 5-pregnene-3,20-dione (Km = 9.3 microM, Vmax = 914.2 nmol/min/mg) and 5-androstene-3,17-dione (Km = 27.6 microM, Vmax = 888.4 nmol/min/mg. Mixed substrate studies showed that the dehydrogenase and isomerase activities utilize their respective pregnene and androstene substrates competitively. Dixon analysis demonstrated that the product steroids, progesterone and androstenedione, are competitive inhibitors of the C-21 and C-19 dehydrogenase activities. Enzyme purified from mitochondria and microsomes had similar kinetic profiles with respect to substrate utilization, product inhibition, and cofactor (NAD+) reduction (mean Km +/- SD using C-19 and C-21 dehydrogenase substrates = 26.4 +/- 0.8 microM, mean Vmax = 73.2 +/- 1.3 nmol/min/mg). Pure enzyme from both organelles exhibited identical biophysical properties in terms of molecular weight and subunit composition, pH optima (pH 9.8, dehydrogenase; pH 7.5, isomerase), temperature optimum (37 degrees C), stability in storage and solution, effects of divalent cations, and the single NH2-terminal sequence of 27 amino acids. These results suggest that the mitochondrial and microsomal enzymes are the same protein localized in different organelles.  相似文献   

10.
Pulmonary angtiotensin-converting enzyme (ACE) is located on the luminal surface of pulmonary microvasculature. Multiple indicator-dilution techniques have been used to measure pulmonary ACE activity in vivo and in isolated lungs. These studies suggest that ACE activity is depressed in several forms of acute lung injury. Depression of ACE activity may reflect impaired substrate delivery to enzyme sites because of flow-related reduction of perfused surface area. To assess the role of altered microvascular flow and surface area in the measurement of ACE activity, we utilized similar techniques to estimate the apparent Km and Vmax of pulmonary ACE in isolated, Krebs-perfused rabbit lungs. Km is an estimate of the affinity of a synthetic ACE substrate, [3H]benzoyl-phenyl-alanyl-alanyl-proline ([3H]BPAP), for ACE and should not be influenced by the rate of substrate delivery to luminal enzyme sites. Conversely, Vmax is an index of the number of ACE sites and should be influenced by perfusion changes that alter the number of perfused sites (recruitment or derecruitment). When isolated lungs were subjected to physiological maneuvers designed to increase or decrease perfused surface area, apparent Vmax increased or decreased respectively. Apparent Km was not altered by these maneuvers. Km and Vmax were independent of changes in perfusion rate when surface area was held constant. Thus these parameters should be useful in evaluating perfusion changes in normal and injured lungs.  相似文献   

11.
Effects of insulin on the kinetic parameters of hexose transport in rat epididymal adipocytes were re-examined. The transport activity was assessed by measuring the rate of uptake of 3-O-[3H]methyl-D-glucose (MeGlc) under equilibrium exchange and zero-trans conditions. The incubation was carried out at 37 degrees C in an infant incubator. During the incubation, the cell suspension (25%, v/v, in a total volume of 48 microliter) was mechanically swirled at a rate of 600 rpm (r = 2 mm). The swirling facilitated the rapid uptake of MeGlc without stimulating the basal transport activity by "mechanical agitation". The basal and insulin-treated cells were incubated under identical conditions, except for the length of the incubation period. The incubation was terminated by the addition of 350 microliters of 1 mM phloretin, which inhibited transport in approximately 0.06 s. The time course of MeGlc uptake was consistent with the view that the process was a multiple-phase reaction. The initial phase of the reaction was completed when the intracellular distribution space of MeGlc was approximately 1% of the total cell volume. Insulin (10 nM) increased the Vmax value of MeGlc uptake 16-fold in equilibrium exchange experiments and 18-fold in zero-trans experiments. At the same time, the hormone decreased the Km value of MeGlc uptake from 11.7 to 5.4 mM in equilibrium exchange experiments and from 9.7 to 4.8 mM in zero-trans experiments. It is concluded that the major effect of insulin on MeGlc uptake is to increase the Vmax value, but the hormone has the additional effect of lowering the apparent Km value.  相似文献   

12.
Effects of cadmium treatment on human platelets were studied with respect to uptake and release of 5-[3H]hydroxytryptamine (5-HT). The uptake of 5-[3H]HT in the presence of varying concentrations of CdCl2 (0.001-10 mM) was inhibited significantly with respect to control platelets and the inhibition was maximum at 1 mM CdCl2 concentration. From studies on the kinetics of 5-[3H]HT uptake a higher Km and significantly lower Vmax for CdCl2-treated platelets were observed. CdCl2 stimulated spontaneous release but inhibited thrombin-induced release of 5-[3H]HT. Spontaneous release of 5-[3H]HT induced by CdCl2 was not significantly altered in the presence of externally available CaCl2 (1 mM).  相似文献   

13.
Cd2+ and Mn2+ accumulation was studied with wild-type Bacillus subtilis 168 and a Cd2+-resistant mutant. After 5 min of incubation in the presence of 0.1 microM 109Cd2+ or 54Mn2+, both strains accumulated comparable amounts of 54Mn2+, while the sensitive cells accumulated three times more 109Cd2+ than the Cd2+-resistant cells did. Both 54Mn2+ and 109Cd2+ uptake, which apparently occur by the same transport system, demonstrated cation specificity; 20 microM Mn2+ or Cd2+ (but not Zn2+) inhibited the uptake of 0.1 microM 109Cd2+ or 54Mn2+. 54Mn2+ and 109Cd2+ uptake was energy dependent and temperature sensitive, but 109Cd2+ uptake in the Cd2+-resistant strain was only partially inhibited by an uncoupler or by a decrease in temperature. 109Cd2+ uptake in the sensitive strain followed Michaelis-Menten kinetics with a Km of 1.8 microM Cd2+ and a Vmax of 1.5 mumol/min X g (dry weight); 109Cd2+ uptake in the Cd2+-resistant strain was not saturable. The apparent Km value for the saturable component of 109Cd2+ uptake by the Cd2+-resistant strain was very similar to that of the sensitive strain, but the Vmax was 25 times lower than the Vmax for the sensitive strain. The Km and Vmax for 54Mn2+ uptake by both strains were very similar. Cd2+ inhibition of 54Mn2+ uptake had an apparent Ki of 3.4 and 21.5 microM Cd2+ for the sensitive and Cd2+-resistant strains, respectively. Mn2+ had an apparent Ki of 1.2 microM Mn2+ for inhibition of 109Cd2+ uptake by the sensitive strain, but the Cd2+-resistant strain had no defined Ki value for inhibition of Cd2+ uptake by Mn2+.  相似文献   

14.
R C Arora  H Y Meltzer 《Life sciences》1989,44(11):725-734
3H-Lysergic acid diethylamide (3H-LSD) binding, a putative measure of 5-HT2 receptor binding, was studied in the blood platelets of 29 depressed patients and 24 normal controls. The Bmax (maximum number of 3H-LSD binding sites) in the blood platelets of depressed patients was significantly greater than that of normal volunteers. This increase in Bmax was due to an increase in female depressed patients only. Bmax was significantly lower in female compared to male normal controls but there was no difference between male and female depressed patients. There was also no difference in Kd (an inverse measure of affinity of 3H-LSD binding to its sites) between normal controls and depressed patients. The correlations between Bmax of 3H-LSD binding and the Bmax of the 3H-imipramine binding site or the Vmax of 5-HT uptake sites were not significant. The role of serotonergic processes in the psychobiology of depression is discussed.  相似文献   

15.
The substrate specificities of cyclic GMP-dependent and cyclic AMP-dependent protein kinases have been compared by kinetic analysis using synthetic peptides as substrates. Both enzymes catalyzed the transfer of phosphate from ATP to calf thymus histone H2B, as well as to two synthetic peptides, Arg-Lys-Arg-Ser32-Arg-Lys-Glu and Arg-Lys-Glu-Ser36-Tyr-Ser-Val, corresponding to the amino acid sequences around serine 32 and serine 36 in histone H2B. Serine 38 in the latter peptide was not phosphorylated by either enzyme. Cyclic GMP-dependent kinase and cyclic AMP-dependent kinase catalyzed the incorporation of 1.1 and 2.0 mol of phosphate/mol of histone H2B, respectively. The phosphorylation of histone H2B, respectively. The phosphorylation of histone H2B by cyclic GMP-dependent kinase showed two distinct optima as the magnesium concentration was increased. However, the phosphorylation of either synthetic peptide by this enzyme was depressed at high magnesium concentrations. As the pH of reaction mixtures was elevated from pH 6 to pH 9, the rate of phosphorylation of Arg-Lys-Arg-Ser32-Arg-Lys-Glu by cyclic GMP-dependent kinase continually increased. Acetylation of the NH2 terminus of the peptide did not qualitatively affect this pH profile, but did increase the Vmax value of the enzyme 3-fold. The apparent Km and Vmax values for the phosphorylation of Arg-Lys-Arg-Ser32-Arg-Lys-Glu by cyclic GMP-dependent kinase were 21 microM and 4.4 mumol/min/mg, respectively. The synthetic peptide Arg-Lys-Glu-Ser36-Tyr-Ser-Val was a relatively poor substrate for cyclic GMP-dependent kinase, exhibiting a Km value of 732 microM, although the Vmax was 12 micromol/min/mg. With histone H2B as substrate for the cyclic GMP-dependent kinase, two different Km values were apparent. The Km values for cyclic AMP-dependent kinase for either synthetic peptide were approximately 100 microM, but the Vmax for Arg-Lys-Arg-Ser32-Arg-Lys-Glu was 1.1 mumol/min/mg, while the Vmax for Arg-Lys-Glu-Ser36-Tyr-Ser-Val was 16.5 mumol/min/mg. These data suggest that although the two cyclic nucleotide-dependent protein kinases have similar substrate specificities, the determinants dictated by the primary sequence around the two phosphorylation sites in histone H2B are different for the two enzymes.  相似文献   

16.
The nuclear conversion of testosterone (T) to dihydrotestosterone (DHT) and androstenedione (delta 4A) to androstanedione (5 alpha-Adione) was compared in the separated stromal and epithelial fractions of hyperplastic (n = 6) and malignant (n = 3) prostatic tissues. Assay conditions were linear with respect to time and protein concentration and were optimal for NADPH concentration. The apparent Km values for the stromal enzymes were 0.2 and 0.02 microM for hyperplasia and carcinoma, respectively, using T as substrate. The apparent Km values, using delta 4A as substrate, were 0.03 and 0.02 microM, respectively. Apparent Vmax values for the stromal formation of DHT were 16.5 +/- 5.4 and 1.97 +/- 0.45 pmol/mg protein/30 min incubation, respectively, for the hyperplastic and malignant tissues. The apparent Vmax values for the formation of 5 alpha-Adione were 2.8 +/- 1.3 and 6.5 +/- 1.2 pmol/mg/protein/30 min incubation. The apparent Km values for the epithelial enzyme, for hyperplastic and malignant tissue were 0.04 and 0.04 microM, for T, and 0.05 and 0.03 microM for delta 4A. The respective apparent Vmax values were 4.6 +/- 0.93 and 0.65 +/- 0.07 for DHT and 2.0 +/- 0.86 and 6.4 +/- 0.45 pmol/mg protein/30 min incubation for 5 alpha-Adione. delta 4A was a competitive inhibitor of T 5 alpha-reduction. These results provide further evidence that different rates of 5 alpha-reduction at least partially explain the differences in androgen levels seen in the hyperplastic and the malignant prostate.  相似文献   

17.
The transport kinetics of gamma-aminobutyric acid (GABA), taurine, and beta-alanine in addition to the mutual inhibition patterns of these compounds were investigated in cultures of neurons and astrocytes derived from mouse cerebral cortex. A high-affinity uptake system for each amino acid was demonstrated both in neurons (Km GABA = 24.9 +/- 1.7 microM; Km Tau = 20.0 +/- 3.3 microM; Km beta-Ala = 73.0 +/- 3.6 microM) and astrocytes (Km GABA = 31.4 +/- 2.9 microM, Km Tau = 24.7 +/- 1.3 microM; Km beta-Ala = 70.8 +/- 3.6 microM). The maximal uptake rates (Vmax) determined were such that, in neurons, Vmax GABA greater than Vmax beta-Ala = Vmax Tau, whereas in astrocytes, Vmax beta-Ala greater than Vmax Tau = Vmax GABA. Taurine was found to inhibit beta-alanine uptake into neurons and astrocytes in a competitive manner, with Ki values of 217 microM in neurons and 24 microM in astrocytes. beta-Alanine was shown to inhibit taurine uptake in neurons and astrocytes, also in a competitive manner, with Ki values of 72 microM in neurons and 71 microM in astrocytes. However, beta-alanine was found to be a weak noncompetitive inhibitor of neuronal and astrocytic GABA uptake, whereas in reverse experiments, GABA displayed weak noncompetitive inhibition of neuronal and astrocytic uptake of beta-alanine. Likewise, taurine was a weak noncompetitive inhibitor of GABA uptake in neurons and similarly, GABA was a weak noncompetitive inhibitor of taurine uptake into neurons.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
L D Barnes  C A Culver 《Biochemistry》1982,21(24):6123-6128
A new enzyme that hydrolyzes diadenosine 5',5"'-P1,P4-tetraphosphate has been purified by a factor of 250 from the acellular slime mold Physarum polycephalum. Activity was assayed radioisotopically with [3H]Ap4A. Isolation of the enzyme was facilitated by dye-ligand chromatography. The enzyme symmetrically hydrolyzes Ap4A to ADP and exhibits biphasic kinetics for the substrate with values for the apparent Km of 2.6 micro M and 37 micro M. The two values of Vmax differ by a factor of 10. Mg2+, Ca2+, and other divalent cations inhibit the activity with 40-80% inhibition occurring at 0.5 mM. Mg2+, at 0.5 mM, decreases both values of Vmax by 50%, decreases the low Km value by about 30%, and increases the high Km value by about 100%. (Ethylenedinitrilo)tetraacetic acid (EDTA) and [ethylenebis(oxyethylenenitrilo)]tetraacetic acid (EGTA), at 10 mM, inhibit the activity by 50%. ADP, ATP, Ap4, and Gp4 are equipotent inhibitors with 50% inhibition occurring at 30 micro M. AMP is a relatively weak inhibitor. The molecular weight of the enzyme is 26000 on the basis of elution of activity from a calibrated Sephadex G-75 column.  相似文献   

19.
In the process of estimating the kinetic parameters of the pulmonary endothelial serotonin (5-HT) uptake, it is critically important to distinguish the effects of hemodynamic changes from endothelial injury. Therefore, the effects of changes in flow rate (1.7-5.0 ml/s), hemodynamics (vasoconstriction by norepinephrine), and temperature (39 vs. 33 degrees C) were investigated in isolated rabbit lungs. Indicator-dilution data were expressed in terms of the Michaelis-Menten equation for the two 5-HT uptake pathways in the preparation. The maximum uptake velocity (Vmax1) and the 5-HT concentration at half-maximum velocity (Km1) of the first pathway as well as the first-order constant (Vmax2/Km2) of the linear part of the second pathway were determined. Neither vasoconstriction nor flow variations had any effect on Km1, whereas increasing the flow rate caused extensive recruitment, with a concomitant increase in Vmax1 and Vmax2/Km2. Furthermore, all the kinetic parameters were significantly decreased at the lower temperature. We conclude that Km1 is independent of organ hemodynamics (vasoconstriction and flow) but susceptible to changes in 5-HT uptake capacity caused by a change in temperature. Vmax1 and Vmax2/Km2 respond to alterations in 5-HT uptake capacity and perfused organ volume. These are prerequisites to apply kinetic modeling as a method for the investigation of pulmonary endothelial function and integrity.  相似文献   

20.
The uptake and efflux of cyclic adenosine 3',5'-monophosphate (3',5'-cAMP) by Escherichia coli membrane vesicles were studied. Metabolic energy was not required for the uptake process and was found to actually decrease the amount of 3',5'-cAMP found in the vesicles. 3',5'-cAMP uptake exhibits saturation kinetics (Km = 10 mM, Vmax = 2.8 nmol/mg of protein per min) and was competitively inhibited by a number of 3',5'-cAMP analogs. The uptake of 3',5'-cAMP was found to be sharply affected by a membrane phase transition. The excretion of 3',5'-cAMP was studied by using everted membrane vesicles. Efflux in this system was dependent upon metabolic energy and was reduced or abolished by uncouplers. Different energy sources powered efflux at different rates, showing a relationship between the degree of membrane energization and rate of excretion of 3',5'-cAMP. The efflux process also displayed saturation kinetics (Km = 10.0 mM, Vmax = 0.98 nmol/mg of protein per min) and was competitively inhibited by the same 3',5'-cAMP analogs and to the same degree as was the uptake process. 3',5'-cAMP was found to be chemically unaltered by both the uptake and excretion processes. These data are interpreted as showing that the uptake and excretion of 3',5'-cAMP in E. coli membrane vesicles are carrier-mediated phenomena, possibly employing the same carrier system. Uptake is by facilitated diffusion whereas efflux is via an energy-dependent, active transport process. Evidence is presented showing that cells can regulate the number of 3',5'-cAMP transport carriers. The rate of 3',5'-cAMP excretion is possibly regulated by both the degree of membrane energization and the number of carriers present per cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号