首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Calmodulin-dependent protein phosphatase from bovine brain and heart was assayed for phosphotyrosine and phosphoserine phosphatase activity using several substrates: 1) smooth muscle myosin light chain (LC20) phosphorylated on tyrosine or serine residues, 2) angiotensin I phosphorylated on tyrosine, and 3) synthetic phosphotyrosine- or phosphoserine-containing peptides with amino acid sequences patterned after the autophosphorylation site in Type II regulatory subunit of the cAMP-dependent protein kinase. The phosphatase was activated by Ni2+ and Mn2+, and stimulated further by calmodulin. In the presence of Ni2+ and calmodulin, it exhibited similar kinetic constants for the dephosphorylation of phosphotyrosyl LC20 (Km = 0.9 microM, and Vmax = 350 nmol/min/mg) and phosphoseryl LC20 (Km = 2.6 microM, Vmax = 690 nmol/min/mg). Dephosphorylation of phosphotyrosyl LC20 was inhibited by phosphoseryl LC20 with an apparent Ki of 2 microM. Compared to the reactions with phosphotyrosyl LC20 as the substrate, reactions with phosphotyrosine-containing oligopeptides exhibited slightly higher Km and lower Vmax values. The reaction with the phosphoseryl peptide based on the Type II regulatory subunit sequence exhibited a slightly higher Km (23 microM), but a much higher Vmax (4400 nmol/min/mg) than that with its phosphotyrosine-containing counterpart. Micromolar concentrations of Zn2+ inhibited the phosphatase activity; vanadate was less potent, and 25 mM NaF was ineffective. The study provides quantitative data to serve as a basis for comparing the ability of the calmodulin-dependent protein phosphatase to act on phosphotyrosine- and phosphoserine-containing substrates.  相似文献   

2.
By use of the autophosphorylated epidermal-growth-factor receptor and the synthetic peptide RRLIE-DAEY(P)AARG, representing an autophosphorylation site of the transforming protein of Rous-sarcoma virus, it is demonstrated that the phosphotyrosyl phosphatase activity of the polycation-stimulated phosphatases is substantially increased by an enzyme-directed effect of ATP or PPi. Concomitant with this increase in phosphotyrosyl phosphatase activity, the phosphorylase phosphatase activity is decreased, thus dramatically changing the substrate specificity of these enzymes. The dephosphorylation of four different phosphotyrosyl sites of the epidermal-growth-factor receptor is neither consecutive nor at random, but a preferred dephosphorylation of the P1 site over the P3 greater than P2 greater than P4 sites is observed. This phosphatase activity represents a substantial fraction of the total phosphotyrosyl phosphatase activity in the post-mitochondrial supernatant of Xenopus laevis oocytes.  相似文献   

3.
A partially purified bovine cortical bone acid phosphatase, which shared similar characteristics with a class of acid phosphatase known as tartrate-resistant acid phosphatase, was found to dephosphorylate phosphotyrosine and phosphotyrosyl proteins, with little activity toward other phosphoamino acids or phosphoseryl histones. The pH optimum was about 5.5 with p-nitrophenyl phosphate as substrate but was about 6.0 with phosphotyrosine and about 7.0 with phosphotyrosyl histones. The apparent Km values for phosphotyrosyl histones (at pH 7.0) and phosphotyrosine (at pH 5.5) were about 300 nM phosphate group and 0.6 mM, respectively, The p-nitrophenyl phosphatase, phosphotyrosine phosphatase, and phosphotyrosyl protein phosphatase activities appear to be a single protein since these activities could not be separated by Sephacryl S-200, CM-Sepharose, or cellulose phosphate chromatographies, he ratio of these activities remained relatively constant throughout the purification procedure, each of these activities exhibited similar thermal stabilities and similar sensitivities to various effectors, and phosphotyrosine and p-nitrophenyl phosphate appeared to be alternative substrates for the acid phosphatase. Skeletal alkaline phosphatase was also capable of dephosphorylating phosphotyrosyl histones at pH 7.0, but the activity of that enzyme was about 20 times greater at pH 9.0 than at pH 7.0. Furthermore, the affinity of skeletal alkaline phosphatase for phosphotyrosyl proteins was low (estimated to be 0.2-0.4 mM), and its protein phosphatase activity was not specific for phosphotyrosyl proteins, since it also dephosphorylated phosphoseryl histones. In summary, these data suggested that skeletal acid phosphatase, rather than skeletal alkaline phosphatase, may act as phosphotyrosyl protein phosphatase under physiologically relevant conditions.  相似文献   

4.
By using [32P]-labeled phosphoaminoacids it has been shown that, at mu molar range concentrations, Tyr-32P but neither Ser-32P nor Thr-32P can be significantly dephosphorylated by highly purified repressible acid phosphatase from Saccharomyces cerevisiae. The phosphopeptide Arg-Arg-Ala-Ser(32P)-Val-Ala however, reproducing the phosphorylation site of pyruvate kinase and previously phosphorylated by cAMP-dependent protein kinase, can be very readily dephosphorylated with favourable kinetic constants (Km 0.28 microM, Vmax = 62 units/micrograms) while its derivatives Ala-Ser(32P)-Val-Ala, Arg-Arg-Ala-Thr(32P)-Val-Ala, Arg-Arg-Pro-Ser(32P)-Pro-Ala as well as other peptides and protein substrates phosphorylated by either protein kinase-C or casein kinase-2 are either unaffected or very slowly dephosphorylated by the phosphatase. Conversely Tyr-32P containing angiotensin, poly (Glu, Tyr) 4:1 and the phosphopeptide Asp-Ala-Glu-Tyr(32P)-Ala-Ala-Arg-Arg-Arg-Gly are all dephosphorylated with kinetic constants comparable to those of free phosphotyrosine (Km 0.2-1 microM; Vmax = 4-10 units/micrograms). It is proposed that, while acid phosphatase exhibits a broad specificity toward phosphotyrosine and phosphotyrosyl polypeptides, it is highly selective toward phosphoseryl sites fulfilling definite structural requirements which are reminiscent of those determining phosphorylation by cAMP-dependent protein kinase.  相似文献   

5.
A protein tyrosine kinase with an apparent Mr of 60,000 was highly purified from bovine spleen and used to phosphorylate poly(Glu, Tyr) (4:1) on tyrosine residues for the study of phosphotyrosyl protein phosphatases from this tissue. About 70% of the phosphotyrosyl protein phosphatase activity in extracts of bovine spleen was adsorbed on DEAE-Sepharose. Chromatography of the eluted phosphotyrosyl protein phosphatases on phosphocellulose indicated the presence of at least two species, one that did not bind to the phosphocellulose and a second species that did bind and was eluted at about 0.5 M NaCl. The phosphatase that did not bind to phosphocellulose was further purified by successive chromatography on poly(L-lysine)-Sepharose, L-tyrosine-agarose, poly(Glu,Tyr)-Sepharose, and Sephacryl S-200. The enzyme had an apparent Mr of 50,000 as estimated by gel filtration and 52,000 as estimated by NaDodSO4- polyacrylamide gel electrophoresis. The phosphatase exhibited a pH optimum of 6.5-7.0, was inhibited by Zn2+ and vanadate ions, and was stimulated by EDTA. Sodium fluoride and sodium pyrophosphate, inhibitors of phosphoseryl protein phosphatases, had no effect on the enzyme. Protein inhibitors of type 1 phosphoseryl/threonyl phosphatase were also ineffective.  相似文献   

6.
The complete time course of the hydrolysis of p-nitrophenyl phosphate catalyzed by the low molecular weight (acid) phosphotyrosyl protein phosphatase from bovine heart was elucidated and analyzed in detail. Burst titration kinetics were demonstrated for the first time with this class of enzyme. At pH 7.0, 4.5 degrees C, a transient pre-steady-state "burst" of p-nitrophenol was formed with a rate constant of 48 s-1. The burst was effectively stoichiometric and corresponded to a single enzyme active site/molecule. The burst was followed by a slow steady-state turnover of the phosphoenzyme intermediate with a rate constant of 1.2 s-1. Product inhibition studies indicated an ordered uni-bi kinetic scheme for the hydrolysis. Partition experiments conducted for several substrates revealed a constant product ratio. Vmax was constant for these substrates, and the overall rate of hydrolysis was increased greatly in the presence of alcohol acceptors. An enzyme-catalyzed 18O exchange between inorganic phosphate and water was detected and occurred with kcat = 4.47 x 10(-3) s-1 at pH 5.0, 37 degrees C. These results were all consistent with the existence of a phosphoenzyme intermediate in the catalytic pathway and with the breakdown of the intermediate being the rate-limiting step. The true Michaelis binding constant Ks = 6.0 mM, the apparent Km = 0.38 mM, and the rate constants for phosphorylation (k2 = 540 s-1) and dephosphorylation (k3 = 36.5 s-1) were determined under steady-state conditions with p-nitrophenyl phosphate at pH 5.0 and 37 degrees C in the presence of phosphate acceptors. The energies of activation for the enzyme-catalyzed hydrolysis at pH 5.0 and 7.0 were 13.6 and 14.1 kcal/mol, respectively. The activation energy for the enzyme-catalyzed medium 18O exchange between phosphate and water was 20.2 kcal/mol. Using the available equilibrium and rate constants, an energetic diagram was constructed for the enzyme-catalyzed reaction.  相似文献   

7.
Z Y Zhang  R L Van Etten 《Biochemistry》1991,30(37):8954-8959
The kcat and Km values for the bovine heart low molecular weight phosphotyrosyl protein phosphatase catalyzed hydrolysis of 16 aryl phosphate monoesters and of five alkyl phosphate monoesters having the structure Ar(CH2)nOPO3H2 (n = 1-5) were measured at pH 5.0 and 37 degrees C. With the exception of alpha-naphthyl phosphate and 2-chlorophenyl phosphate, which are subject to steric effects, the values of kcat are effectively constant for the aryl phosphate monoesters. This is consistent with the catalysis being nucleophilic in nature, with the existence of a common covalent phosphoenzyme intermediate, and with the breakdown of this intermediate being rate-limiting. In contrast, kcat for the alkyl phosphate monoesters is much smaller and the rate-limiting step for these substrates is interpreted to be the phosphorylation of the enzyme. A single linear correlation is observed for a plot of log (kcat/Km) vs leaving group pKa for both classes of substrates at pH 5.0: log (kcat/Km) = -0.28pKa + 6.88 (n = 19, r = 0.89), indicating a uniform catalytic mechanism for the phosphorylation event. The small change in effective charge (-0.28) on the departing oxygen of the substrate is similar to that observed in the specific acid catalyzed hydrolysis of monophosphate monoanions (-0.27) and is consistent with a strong electrophilic interaction of the enzyme with this oxygen atom in the transition state. The D2O solvent isotope effect and proton inventory experiments indicate that only one proton is "in flight" in the transition state of the phosphorylation process and that this proton transfer is responsible for the reduction of effective charge on the leaving oxygen.  相似文献   

8.
The phosphotyrosyl [Tyr(P)]-immunoglobulin G (IgG) phosphatase activity in the extracts of bovine heart, bovine brain, human kidney, and rabbit liver can be separated by DEAE-cellulose at neutral pH into two fractions. The unbound fraction exhibits a higher activity at acidic than neutral pH while the reverse is true for the bound fraction. Of all tissues examined, the Tyr(P)-IgG phosphatase activity in the unbound fraction measured at pH 5.0 is higher than that in the bound fraction measured at pH 7.2. The acid Tyr(P)-IgG phosphatase activity has been extensively purified from bovine heart. It copurified with an acid phosphatase activity (p-nitrophenyl phosphate (PNPP) as a substrate) throughout the purification procedure. These two activities coelute from various ion-exchange and gel filtration chromatographies and comigrate on polyacrylamide gel electrophoresis, indicating that they reside on the same protein molecule. The phosphatase has a Mr = 15,000 by gel filtration and exhibits an optimum between pH 5.0 and 6.0 when either Tyr(P)-IgG-casein or PNPP is the substrate. It is highly specific for Tyr(P)-protein with little activities toward phosphoseryl [Ser(P)]- or phosphothreonyl [Thr(P)]-protein. The enzyme activities toward Tyr(P)-casein and PNPP are strongly inhibited by microM molybdate and vanadate but insensitive to inhibition by L(+)-tartrate, NaF, or Zn2+. The molecular and catalytic properties of the acid Tyr(P)-protein phosphatase purified from bovine heart are very similar to those of the low-molecular-weight acid phosphatases of Mr = 14,000 previously identified and purified from the cytosolic fraction of human liver, placenta, and other animal tissues.  相似文献   

9.
The first representative of a group of mammalian, low molecular weight phosphotyrosyl protein phosphatases was cloned, sequenced and expressed in Escherichia coli. Using a 61-mer oligonucleotide probe based on the amino acid sequence of the purified enzyme, several overlapping cDNA clones were isolated from a bovine heart cDNA library. A full-length clone was obtained consisting of a 27-bp 5' noncoding region, an open reading frame encoding the expected 157 amino acid protein, and an extensive 3' nontranslated sequence. The identification of the clone as full length was consistent with results obtained in mRNA blotting experiments using poly(A)+ mRNA from bovine heart. The coding sequence was placed downstream of a bacteriophage T7 promoter, and protein was expressed in E. coli. The expressed enzyme was soluble, and catalytically active and was readily isolated and purified. The recombinant protein had the expected Mr of 18,000 (estimated by SDS-PAGE), and it showed cross-reactivity with antisera that had been raised against both the bovine heart and the human placenta enzymes. The amino acid sequence of the N-terminal region of the expressed protein showed that methionine had been removed, resulting in a sequence identical to that of the enzyme isolated from the bovine tissue, with the exception that the N-terminal alanine of the protein from tissue is acetylated. A kinetically competent phosphoenzyme intermediate was trapped from a phosphatase-catalyzed reaction. Using 31P NMR, the covalent intermediate was identified as a cysteinyl phosphate. By analogy with the nomenclature used for serine esterases, these enzymes may be called cysteine phosphatases.  相似文献   

10.
The A431 human epidermoid carcinoma cell line exhibits a 30-100-fold overexpression of the epidermal growth factor (EGF) receptor. We have characterized a membrane-associated phosphotyrosyl-protein phosphatase (PTPase) in these cells since it seemed reasonable that overexpression of the EGF-receptor tyrosine kinase will be matched by high PTPase activity. Indeed, of 12 cell lines tested, the A431 cells had the highest specific PTPase activity. About 70% of the total cellular PTPase activity was found associated with membranes after cell fractionation. The membrane-associated PTPase was hydrophobic as judged by its behaviour in Triton X-114 phase partitioning. High-performance liquid chromatography (HPLC) on a DEAE column revealed a single, homogeneous species of membrane-associated PTPase with an apparent molecular mass of 43 kDa as determined by HPLC on a gel permeation column in the presence of Triton X-100. Comparison of this PTPase with the membrane-associated PTPase activities present in rat spleen and in the human chronic myelogenous leukemia cell line K562 revealed additional species resolvable by DEAE-HPLC. These findings suggest that cells may possess different PTPase activities depending on their growth and differentiation states.  相似文献   

11.
A 17-kilodalton (kDa) human placental acid phosphatase was purified 21,400-fold to homogeneity. The enzyme has an isoelectric point of pH 7.2 and a specific activity of 106 mumol min-1 mg-1 using p-nitrophenyl phosphate as a substrate at pH 5 and 37 degrees C. This placental acid phosphatase showed activity toward phosphotyrosine and toward phosphotyrosyl proteins. The pH optima of the enzyme with phosphotyrosine and with phosphotyrosyl band 3 (from human red cells) were between pH 5 and 6 and pH 5 and 7, respectively. The Km for phosphotyrosine was 1.6 mM at pH 5 and 37 degrees C. Phosphotyrosine phosphatase activity was not inhibited by tartrate or fluoride, but vanadate, molybdate, and zinc ions acted as strong inhibitors. Enzyme activity was also inhibited by DNA, but RNA was not inhibitory. It is a hydrophobic nonglycoprotein containing approximately 20% hydrophobic amino acids. The average hydrophobicity was calculated to be 903 cal/mol. The absorption coefficient at 280 nm, E1% 1cm, was determined to be 5.7. The optical ellipticity of the enzyme at 222 nm was -5200 deg cm2 dmol-1, which would correspond to a low helical content. Free sulfhydryl and histidine residues were necessary for the enzyme activity. The enzyme contained four reactive sulfhydryl groups. Chemical modification of the sulfhydryls with iodoacetate resulted in unfolding of the protein molecule as detected by fluorescence emission spectroscopy. Antisera against both the native and the denatured protein were able to immunoprecipitate the native enzyme. However, upon denaturation, the acid phosphatase lost about 70% of the antigenic determinants. Both antisera cross-reacted with a single 17-kDa polypeptide on immunoblotting.  相似文献   

12.
Phosphotyrosyl protein phosphatase (PTPase) 1B was purified from human placenta. Immunoprecipitation analysis revealed that the isolated PTPase 1B appears as a complex with the receptor for protein kinase C (RACK1) and protein kinase C (PKC)delta. The abilities of PTPase 1B and PKCdelta to associate with RACK1 were reconfirmed by an in vitro reconstitution experiment. The E. coli expressed and biotinylated mice-RACK1-encoded fusion protein was capable of recruiting PTPase 1B and PKCdelta in the antibiotin immunoprecipitate as a complex of PTPase 1B/RACK1/PKCdelta. Thus PTPase 1B enzyme preparation was subjected to further purification by selective binding of PTPase 1B onto PEP(Taxol) affinity column in the absence of ATP. The purified PTPase 1B enzyme exihibited dose-dependent phosphatase activity towards [gamma-(32)P]-ATP labeled mice beta-tubulin-encoded fusion protein. The dephosphorylation reaction with PTPase 1B was enhanced with geranylgeranyl pyrophosphate, but not with farnesyl pyrophosphate. Interestingly, additional incubation of the purified PTPase 1B enzyme preparation with RACK1, geranylgeranyl pyrophosphate failed to modulate the dephosphorylation activity of PTPase 1B. In contrast, the enhancement effect of farnesyl pyrophosphate on the kinase activity of PKCdelta was sustained in the presence of RACK1. That is, farnesyl pyrophosphate may function as a signal to induce the kinase activity of PKCdelta in PTPase 1B/RACK1/PKCdelta complex but geranylgeranyl pyrophosphate may not for PTPase 1B. J. Exp. Zool. 301A:307-316, 2004.  相似文献   

13.
14.
Calcineurin (CN) dephosphorylated [32P] phosphotyrosyl glutamine synthetase, a model phosphoprotein substrate containing approximately 1 mol of phosphotyrosine per mol subunit. Phosphatase activity with and without calmodulin (CaM) was greatly stimulated by Mn2+; with Ca2+, even in the presence of CaM, activity was very low. CaM-stimulated phosphatase activity exhibited deactivation with time; initial rates declined markedly after 2-3 min. The Michaelis constant for substrate (3 microM) was identical whether 2 or 12 min assays (with CaM) were used suggesting that the decreased rate of hydrolysis did not result from a decrease in affinity for the phosphoprotein substrate. Limited proteolysis of CN by chymotrypsin increased phosphatase activity 2-3 times that of CaM-supported activity; however, addition of CaM to assays with protease-activated CN reduced activity to that observed for non-proteolyzed enzyme. These data suggest that, in addition to stimulation, CaM can inhibit certain activated conformations of the phosphatase.  相似文献   

15.
Characterization of bovine brain calmodulin-dependent protein phosphatase   总被引:4,自引:0,他引:4  
Calmodulin-dependent protein phosphatase of bovine brain exhibited a pH optimum of 7 and appeared to require sulfhydryl groups for activity. Phosphatase activity was inhibited by both NaF and ZnCl2, but was stimulated approximately 2-fold by MnCl2. The enzyme exhibited broad substrate specificity, dephosphorylating casein, troponin I, protamine, histone, and phosvitin, and was not phosphorylated by cAMP-dependent protein kinase. With 32P-labeled casein as a substrate, phosphatase was activated 15-fold by calmodulin; the dissociation constant of phosphatase for calmodulin was 30 nM. Activation of the enzyme by calmodulin as a function of Ca2+ was highly cooperative; the Hill coefficient was 4.9. At a saturating concentration of calmodulin, half-maximal activation of phosphatase was obtained at 0.3 microM Ca2+. Calmodulin increased the Vmax from 1.7 to 41 nmol mg protein-1 min-1 with no significant change in its Km. Formation of a Ca2+-dependent complex between calmodulin and the phosphatase was demonstrated by a calmodulin-Sepharose affinity column, gel-filtration chromatography, and sedimentation on a sucrose density gradient. The rate of formation and dissociation of the calmodulin X phosphatase complex was rapid and readily reversible in response to changes in Ca2+ concentration. The calmodulin X phosphatase complex consists of 1 mol of calmodulin and 1 mol of phosphatase.  相似文献   

16.
Calcineurin purified from bovine brain is shown to possess phosphotyrosyl -protein phosphatase activity towards proteins phosphorylated by the epidermal growth factor receptor/kinase. The phosphatase activity is augmented by Ca2+/calmodulin or divalent cation (Ni2+ greater than Mn2+ greater than Mg2+ greater than Co2+). In the simultaneous presence of all three effectors, the enzymatic activity is synergistically increased. Ca2+/calmodulin activates the Mg2+-supported activity by decreasing the Km value for phosphotyrosyl -casein from 2.2 to 0.6 microM, and increasing the Vmax from 0.4 to 4.6 nmol/min/mg. These results represent the first demonstration that calcineurin can dephosphorylate phosphotyrosyl -proteins and suggest a novel mechanism of activation of this enzyme.  相似文献   

17.
An active form of phosphorylase phosphatase of Mr = 33,000, referred to as the catalytic subunit for over a decade, was purified to near-homogeneity from rabbit skeletal muscle. Repeated immunization of a sheep produced immunoglobulins that blocked the activity of the phosphatase. These immunoglobulins were affinity-purified on columns of immobilized phosphorylase phosphatase and used as macromolecular probes in a "Western" immunoblotting procedure with peroxidase-conjugated rabbit anti-sheep immunoglobulins. Only one protein, of Mr = 33,000, was stained in samples of the immunogen, attesting to the specificity of the probes. However, the Mr = 33,000 phosphatase protein was not detected in muscle extracts or in partially purified preparations. Instead, a single protein of Mr = 70,000 was detected. Limited proteolysis, in particular by Staphylococcus aureus V8 protease and thermolysin, converted the immunoreactive protein from Mr = 70,000 to Mr = 33,000. Coagulation of the phosphatase preparation with 80% ethanol at room temperature rendered the Mr = 70,000 protein insoluble, but allowed extraction of the Mr = 33,000 protein from the precipitate. Thus, we conclude that the immunoreactive protein of Mr = 70,000 is the "catalytic subunit" of phosphorylase phosphatase with a catalytic domain of Mr = 33,000. Previous purification schemes have yielded only the fragment of Mr = 33,000 due to its relative resistance to proteolysis and coagulation. Gel filtration chromatography of the "native" form of phosphorylase phosphatase showed Mr approximately 230,000. Both the Mr = 70,000 catalytic subunit and a Mr = 60,000 protein related to inhibitor-2 were detected by immunoblotting in the same fractions that exhibited activity after treatment with Co2+ and trypsin. Only the Mr = 60,000 protein was degraded during this activation process. We propose that the native phosphorylase phosphatase is an elongated structure with two-fold symmetry, containing one catalytic subunit of Mr = 70,000 and one regulatory subunit of Mr = 60,000.  相似文献   

18.
A metal-ion-independent, nonspecific phosphoprotein phosphatase (Mr = 35000) which represents the major phosphorylase phosphatase activity in bovine adrenal cortex has been purified to apparent homogeneity. An alkaline phosphatase activity (p-nitrophenyl phosphate as a substrate) of the same molecular weight, which requires both a metal ion (Mg2+ greater than Mn2+ greater than Co2+) and a sulfhydryl compound for activity, has been found to co-purify with the phosphoprotein phosphatase throughout the purification procedures. Characterization of the phosphoprotein and the alkaline phosphatase activities with respect to their catalytic properties, substrate and metal ion specificities, relationship with large molecular forms of the enzymes and responses to various effectors has been carried out. The results indicate that the phosphoprotein phosphatase can be converted by pyrophosphoryl compounds (e.g. PPi and ATP) to a metal-ion-dependent form which, subsequently, can be reactivated by Co2+ greater than Mn2+ but not by Mg2+ or Zn2+. The results also indicate that, although the phosphoprotein and the alkaline phosphatase activities are closely associated, they exhibit distinct physical and catalytic properties. Discussions concerning whether these two activities represent two different forms of the same protein or two different yet very similar polypeptide chains have been presented.  相似文献   

19.
A novel acid phosphatase containing phosphotyrosyl phosphatase (PTPase) activity, designated PiACP, from Prevotella intermedia ATCC 25611, an anaerobe implicated in progressive periodontal disease, has been purified and characterized. PiACP, a monomer with an apparent molecular mass of 30 kDa, did not require divalent metal cations for activity and was sensitive to orthovanadate but highly resistant to okadaic acid. The enzyme exhibited substantial activity against tyrosine phosphate-containing peptides derived from the epidermal growth factor receptor. On the basis of N-terminal and internal amino acid sequences of purified PiACP, the gene coding for PiACP was isolated and sequenced. The PiACP gene consisted of 792 bp and coded for a basic protein with an M(r) of 29,164. The deduced amino acid sequence exhibited striking similarity (25 to 64%) to those of members of class A bacterial acid phosphatases, including PhoC of Morganella morganii, and involved a conserved phosphatase sequence motif that is shared among several lipid phosphatases and the mammalian glucose-6-phosphatases. The highly conservative motif HCXAGXXR in the active domain of PTPase was not found in PiACP. Mutagenesis of recombinant PiACP showed that His-170 and His-209 were essential for activity. Thus, the class A bacterial acid phosphatases including PiACP may function as atypical PTPases, the biological functions of which remain to be determined.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号