首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ABSTRACT. An account is given of work published during the past 10 years incriminating species of phlebotomine sandflies as vectors of Leishmania species which infect man.
An assessment is made of the degrees of certainty of the vectorial roles of eighty-one species and subspecies of sandflies (thirty-seven Old World and forty-four New World) in the transmission of twenty-nine leishmanial parasites of mammals. At least one species of sandfly is considered to be a proven vector of each of ten parasites.
Of the eighty-one sandfly taxa, evidence is judged to be sufficient to incriminate nineteen as proven vectors (eleven Phlebotomus species and eight Lutzomyia species or subspecies) and evidence for a further fourteen (nine Phlebotomus species and five Lutzomyia species or subspecies) is considered to be strong.
The suggested criteria for incrimination of a vector are anthropophily and common infection with the same leishmanial parasite as that found in man in the same place. More weight should be given to natural infections persisting after the digestion of a bloodmeal than those in the presence of blood. Supporting evidence is a concordance in the distribution of the fly and the disease in man, proof that the fly feeds regularly on the reservoir host, a flourishing development of the parasite in infected flies and the experimental transmission of the parasite by the bite of the fly.  相似文献   

2.
Plasmodium vivax in southern Mexico exhibits different infectivities to 2 local mosquito vectors, Anopheles pseudopunctipennis and Anopheles albimanus. Previous work has tied these differences in mosquito infectivity to variation in the central repeat motif of the malaria parasite's circumsporozoite (csp) gene, but subsequent studies have questioned this view. Here we present evidence that P. vivax in southern Mexico comprised 3 genetic populations whose distributions largely mirror those of the 2 mosquito vectors. Additionally, laboratory colony feeding experiments indicate that parasite populations are most compatible with sympatric mosquito species. Our results suggest that reciprocal selection between malaria parasites and mosquito vectors has led to local adaptation of the parasite. Adaptation to local vectors may play an important role in generating population structure in Plasmodium. A better understanding of coevolutionary dynamics between sympatric mosquitoes and parasites will facilitate the identification of molecular mechanisms relevant to disease transmission in nature and provide crucial information for malaria control.  相似文献   

3.
Prevalence and intensity of blood parasites are known to vary in space within a same species, yet the causes underlying such variation are poorly known. Theoretically, blood parasites variation can be attributed to differences to exposure to parasite vectors and/or to differences in host susceptibility. Here, we show that prevalence of Haemoproteus columbae in feral pigeons Columba livia varied among five near-by populations (range 15%-100%), paralleled by variation in the abundance of its main vector, the louse flies Pseudolynchia canariensis. Geographic variation in intensity of blood parasites did not covary with abundance of vectors. Within populations, older individuals had a higher probability of being parasitized than younger ones, whereas younger birds, when infected, suffered higher intensities. Furthermore, we found no evidence of sex-related differences neither in prevalence nor in intensity of blood parasite infections. To demonstrate that geographical variation in prevalence was actually due to differences in vector exposure, we conducted two experiments based on translocation of unparasitized pigeons from a vector-free area to an area where both the parasite and vector were abundant. With the first experiment, we demonstrated that unparasitized pigeons were not resistant to the parasite because when transmission was possible pigeons became parasitized in a few months. With the second experiment, in which half of the pigeons were prevented from contacts with the vector, we ruled out the posibility that pigeons we considered as unparasitized would have suffered from latent infections. Therefore, both observational and experimental evidence supports the view that vector abundance is the major factor influencing the spatial variation in prevalence of H. columbae in pigeons.  相似文献   

4.
Leishmaniasis is caused by a wide range of parasites that are transmitted by an even wider range of sand fly vectors. The phlebotomine vectors of Leishmaniasis are in some cases only permissive to the complete development of the species of Leishmania that they transmit in nature. The parasite–sand fly interactions that control this specificity are related to differences in the ability of the parasite to inhibit or to resist killing by proteolytic enzymes released into the mid-gut soon after blood feeding, and/or to maintain infection in the mid-gut during excretion of the digested blood meal. In each case, surface expressed or released phosphoglycan-containing molecules appear to promote parasite survival. The evidence that the surface lipophosphoglycan (LPG) mediates promastigote attachment to the mid-gut epithelium so as to prevent their loss during blood-meal excretion is especially strong based on the comparison of development in sand flies using LPG-deficient mutants. LPG displays interspecies polymorphisms in their phosphoglycan domains that in most cases can fully account for species-specific vector competence.  相似文献   

5.
Gut microbiota and parasite transmission by insect vectors   总被引:1,自引:0,他引:1  
In the gut of some insect vectors, parasites ingested with the bloodmeal decrease in number before coming into contact with host tissues. Many factors could be responsible for this reduction in parasite number but the potentially important role of the large communities of naturally occurring microorganisms that exist alongside the newly ingested parasites in the vector midgut has been largely overlooked. Some previous reports exist of the inhibition of parasite development by vector gut microbiota and of the killing of Trypanosoma cruzi and Plasmodium spp. by prodigiosin produced by bacteria. Based on this evidence, we believe that the microbiota present in the midgut of vector insects could have important roles as determinants of parasite survival and development in insect vector hosts and, therefore, contribute to the modulation of vector competence for many important diseases.  相似文献   

6.
Of the insects that serve as vectors for parasitic diseases, the genus Anopheles is the most important. Of the approximately 400 species, about twelve serve as vectors for human pathogens. Months have passed since the sequenced genomes of the malaria parasite, Plasmodium falciparum, and its vector, Anopheles gambiae, were published. Sequences were compared, gene and protein predictions were made, new research areas evolved and many ongoing projects gained new momentum. A general belief is that we are at a turning point: we are now in a position to tackle both the parasite and the vector from new angles and with new force, for example, by identifying new drug targets and obtaining a deeper insight into molecular mechanisms of the insect, the parasite and the interactions between them.  相似文献   

7.
Host movements, including migrations or range expansions, are known to influence parasite communities. Transitions to captivity—a rarely studied yet widespread human‐driven host movement—can also change parasite communities, in some cases leading to pathogen spillover among wildlife species, or between wildlife and human hosts. We compared parasite species richness between wild and captive populations of 22 primate species, including macro‐ (helminths and arthropods) and micro‐parasites (viruses, protozoa, bacteria, and fungi). We predicted that captive primates would have only a subset of their native parasite community, and would possess fewer parasites with complex life cycles requiring intermediate hosts or vectors. We further predicted that captive primates would have parasites transmitted by close contact and environmentally—including those shared with humans and other animals, such as commensals and pests. We found that the composition of primate parasite communities shifted in captive populations, especially because of turnover (parasites detected in captivity but not reported in the wild), but with some evidence of nestedness (holdovers from the wild). Because of the high degree of turnover, we found no significant difference in overall parasite richness between captive and wild primates. Vector‐borne parasites were less likely to be found in captivity, whereas parasites transmitted through either close or non‐close contact, including through fecal‐oral transmission, were more likely to be newly detected in captivity. These findings identify parasites that require monitoring in captivity and raise concerns about the introduction of novel parasites to potentially susceptible wildlife populations during reintroduction programs.  相似文献   

8.
Many studies have attempted to assess the relative effects of different vectors of a disease on animal populations. To this end, three measures have been proposed: Vectorial efficiency, Vectorial capacity and recently Vectorial effectiveness (or Vectorial impact). In this study we relate these measures to derive some of their properties emphasising in the vectorial impact for its importance in both, population performance of parasites and the proportion of the prevalence of one parasite due to a given vector. We applied the quantitative expressions advanced in this study to a simple Chilean example with one parasite (Trypanosoma cruzi), two vectors (Triatoma infestans and Mepraia spinolai) and one animal population (humans: Chagas's disease).  相似文献   

9.
Although a small set of external factors account for much of the spatial variation in plant and animal diversity, the search continues for general drivers of variation in parasite species richness among host species. Qualitative reviews of existing evidence suggest idiosyncrasies and inconsistent predictive power for all proposed determinants of parasite richness. Here, we provide the first quantitative synthesis of the evidence using a meta‐analysis of 62 original studies testing the relationship between parasite richness across animal, plant and fungal hosts, and each of its four most widely used presumed predictors: host body size, host geographical range size, host population density, and latitude. We uncover three universal predictors of parasite richness across host species, namely host body size, geographical range size and population density, applicable regardless of the taxa considered and independently of most aspects of study design. A proper match in the primary studies between the focal predictor and both the spatial scale of study and the level at which parasite species richness was quantified (i.e. within host populations or tallied across a host species' entire range) also affected the magnitude of effect sizes. By contrast, except for a couple of indicative trends in subsets of the full dataset, there was no strong evidence for an effect of latitude on parasite species richness; where found, this effect ran counter to the general latitude gradient in diversity, with parasite species richness tending to be higher further from the equator. Finally, the meta‐analysis also revealed a negative relationship between the magnitude of effect sizes and the year of publication of original studies (i.e. a time‐lag bias). This temporal bias may be due to the increasing use of phylogenetic correction in comparative analyses of parasite richness over time, as this correction yields more conservative effect sizes. Overall, these findings point to common underlying processes of parasite diversification fundamentally different from those controlling the diversity of free‐living organisms.  相似文献   

10.
Despite increasing evidence of behavioural manipulation of their vectors by pathogens, the underlying mechanisms causing infected vectors to act in ways that benefit pathogen transmission remain enigmatic in most cases. Here, 2-D DIGE coupled with MS were employed to analyse and compare the head proteome of mosquitoes (Anopheles gambiae sensu stricto (Giles)) infected with the malarial parasite (Plasmodium berghei) with that of uninfected mosquitoes. This approach detected altered levels of 12 protein spots in the head of mosquitoes infected with sporozoites. These proteins were subsequently identified using MS and functionally classified as belonging to metabolic, synaptic, molecular chaperone, signalling, and cytoskeletal groups. Our results indicate an altered energy metabolism in the head of sporozoite-infected mosquitoes. Some of the up-/down-regulated proteins identified, such as synapse-associated protein, 14-3-3 protein and calmodulin, have previously been shown to play critical roles in the CNS of both invertebrates and vertebrates. Furthermore, a heat shock response (HSP 20) and a variation of cytoarchitecture (tropomyosins) have been shown. Discovery of these proteins sheds light on potential molecular mechanisms that underlie behavioural modifications and offers new insights into the study of intimate interactions between Plasmodium and its Anopheles vector.  相似文献   

11.
The microsporidan Glugea stephani is a common parasite of juvenile English sole (Parophrys vetulus) in Yaquina Bay, Oregon. Field observations indicated that fish became infected only in the upper estuary where summer temperatures were above 15C and the incidence of infection reached 79.8% in the late fall. Laboratory infections developed and parasite growth occurred only at or above 15C. The parasite was successfully transmitted to juvenile English sole by brine shrimp (Artemia salina) and amphipod (Corophium spinocorne) vectors as well as by direct ingestion of spores by the host. Infections that resulted from ingestion of spore-carrying vectors were much heavier than those resulting from the direct ingestion of spores. The speckled sanddab (Citharichthys stigmaeus), a nonpleuronectid flatfish, and chum salmon (Oncorhynchus keta) were refractory to G. stephani infection in the laboratory.  相似文献   

12.
Leishmaniases are serious parasitic diseases the etiological organisms of which are transmitted by insect vectors, phlebotominae sand flies. Two sand fly species, Phlebotomus papatasi and P. sergenti, display remarkable specificity for Leishmania parasites they transmit in nature, but many others are broadly permissive to the development of different Leishmania species. Previous studies have suggested that in 'specific' vectors the successful parasite development is mediated by parasite surface glycoconjugates and sand fly lectins, however we show here that interactions involving 'permissive' sand flies utilize another molecules. We did find that the abundant surface glycoconjugate lipophosphoglycan, essential for attachment of Leishmania major in the specific vector P. papatasi, was not required for parasite adherence or survival in the permissive vectors P. arabicus and Lutzomyia longipalpis. Attachment in several permissive sand fly species instead correlated with the presence of midgut glycoproteins bearing terminal N-acetyl-galactosamine and with the occurrence of a lectin-like activity on Leishmania surface. This new binding modality has important implications for parasite transmission and evolution. It may contribute to the successful spreading of Leishmania due to their adaptation into new vectors, namely transmission of L. infantum by Lutzomyia longipalpis; this event led to the establishment of L. infantum/chagasi in Latin America.  相似文献   

13.
Blackburn  Tim M.  Ewen  John G. 《EcoHealth》2016,14(1):61-73

We provide an overview of the current state of knowledge of parasites in biological invasions by alien species. Parasites have frequently been invoked as drivers of invasions, but have received less attention as invasion passengers. The evidence to date that parasites drive invasions by hosts is weak: while there is abundant evidence that parasites have effects in the context of alien invasions, there is little evidence to suggest that parasites have differential effects on alien species that succeed versus fail in the invasion process. Particular case studies are suggestive but not yet informative about general effects. What evidence there is for parasites as aliens suggests that the same kind of factors determine their success as for non-parasites. Thus, availability is likely to be an important determinant of the probability of translocation. Establishment and spread are likely to depend on propagule pressure and on the environment being suitable (all necessary hosts and vectors are present); the likelihood of both of these dependencies being favourable will be affected by traits relating to parasite life history and demography. The added complication for the success of parasites as aliens is that often this will depend on the success of their hosts. We discuss how these conclusions help us to understand the likely effects of parasites on the success of establishing host populations (alien or native).

  相似文献   

14.
We provide an overview of the current state of knowledge of parasites in biological invasions by alien species. Parasites have frequently been invoked as drivers of invasions, but have received less attention as invasion passengers. The evidence to date that parasites drive invasions by hosts is weak: while there is abundant evidence that parasites have effects in the context of alien invasions, there is little evidence to suggest that parasites have differential effects on alien species that succeed versus fail in the invasion process. Particular case studies are suggestive but not yet informative about general effects. What evidence there is for parasites as aliens suggests that the same kind of factors determine their success as for non-parasites. Thus, availability is likely to be an important determinant of the probability of translocation. Establishment and spread are likely to depend on propagule pressure and on the environment being suitable (all necessary hosts and vectors are present); the likelihood of both of these dependencies being favourable will be affected by traits relating to parasite life history and demography. The added complication for the success of parasites as aliens is that often this will depend on the success of their hosts. We discuss how these conclusions help us to understand the likely effects of parasites on the success of establishing host populations (alien or native).  相似文献   

15.
Parasite transmission strategies strongly impact host–parasite co‐evolution and virulence. However, studies of vector‐borne parasites such as avian malaria have neglected the potential effects of host relatedness on the exchange of parasites. To test whether extended parental care in the presence of vectors increases the probability of transmission from parents to offspring, we used high‐throughput sequencing to develop microsatellites for malaria‐like Leucocytozoon parasites of a wild raptor population. We show that host siblings carry genetically more similar parasites than unrelated chicks both within and across years. Moreover, chicks of mothers of the same plumage morph carried more similar parasites than nestlings whose mothers were of different morphs, consistent with matrilineal transmission of morph‐specific parasite strains. Ours is the first evidence of an association between host relatedness and parasite genetic similarity, consistent with vector‐mediated parent‐to‐offspring transmission. The conditions for such ‘quasi‐vertical’ transmission may be common and could suppress the evolution of pathogen virulence.  相似文献   

16.
It is well known that parasites are often highly aggregated on their hosts such that relatively few individuals host the large majority of parasites. When the parasites are vectors of infectious disease, a key consequence of this aggregation can be increased disease transmission rates. The cause of this aggregation, however, is much less clear, especially for parasites such as arthropod vectors, which generally spend only a short time on their hosts. Regression-based analyses of ticks on various hosts have focused almost exclusively on identifying the intrinsic host characteristics associated with large burdens, but these efforts have had mixed results; most host traits examined have some small influence, but none are key. An alternative approach, the Poisson-gamma mixture distribution, has often been used to describe aggregated parasite distributions in a range of host/macroparasite systems, but lacks a clear mechanistic basis. Here, we extend this framework by linking it to a general model of parasite accumulation. Then, focusing on blacklegged ticks (Ixodes scapularis) on mice (Peromyscus leucopus), we fit the extended model to the best currently available larval tick burden datasets via hierarchical Bayesian methods, and use it to explore the relative contributions of intrinsic and extrinsic factors on observed tick burdens. Our results suggest that simple bad luck-inhabiting a home range with high vector density-may play a much larger role in determining parasite burdens than is currently appreciated.  相似文献   

17.
The identification of new targets for vaccine and drug development for the treatment of Chagas’ disease is dependent on deepening our understanding of the parasite genome. Vectors for genetic manipulation in Trypanosoma cruzi basically include those that remain as circular episomes and those that integrate into the parasite’s genome. Artificial chromosomes are alternative vectors to overcome problematic transgene expression often occurring with conventional vectors in this parasite. We have constructed a series of vectors named pTACs (Trypanosome Artificial Chromosomes), all of them carrying telomeric and subtelomeric sequences and genes conferring resistance to different selection drugs. In addition, one pTAC harbours a modified GFP gene (pTAC-gfp), and another one carries the ornithine decarboxilase gene from Crithidia fasciculata (pTAC-odc). We have encountered artificial chromosomes generated from pTACs in transformed T. cruzi epimastigotes for every version of the designed vectors. These extragenomic elements, in approximately 6–8 copies per cell, remained as linear episomes, contained telomeres and persisted after 150 and 60 generations with or without selection drugs, respectively. The linear molecules remained stable through the different T. cruzi developmental forms. Furthermore, derived artificial chromosomes from pTAC-odc could complement the auxotrophy of T. cruzi for polyamines. Our results show that pTACs constitute useful tools for reverse functional genetics in T. cruzi that will contribute to a better understanding of T. cruzi biology.  相似文献   

18.
Quantitative analyses of vector-borne parasite systems are dominated by insect systems. In attempts to formulate general statements concerning vectors and their indirectly transmitted parasites, ticks are usually ignored or they are implicitly or explicitly assumed to obey the same rules as insects. Here, Sarah Randolph shows that contrasting biological attributes of these two different arthropod classes (ticks and insects) directly affect their performance as vectors. The equations for estimating their respective potential to transmit parasites differ in important respects, as does the relative impact of each factor on these estimates. These conclusions direct attention towards the empirical field data most appropriate for quantifying the spatially and temporally variable risk of infection from these contrasting vector-borne parasite systems.  相似文献   

19.
The relationship between mosquito vectors and lymphatic filariasis (LF) parasites can result in a range of transmission outcomes. Anophelines are generally characterized as poor vectors due to an inability to support development at low densities. However, it is important to understand the potential for transmission in natural vectors to maximize the success of elimination efforts. Primary vectors in Papua New Guinea (n = 1209) were dissected following exposure to microfilaremic blood (range 8–233 mf/20 µl). We examined density dependent and species-specific parasite prevalence, intensity and yield, barriers to parasite development as well as impacts on mosquito survival. We observed strikingly different parasite prevalence and yield among closely related species. Prevalence of infective stage larvae (L3s) ranged from 4.2% to 23.7% in An. punctulatus, 24.5% to 68.6% in An. farauti s.s. and 61.9% to 100% in An. hinesorum at low and high density exposures, respectively. Injection experiments revealed the greatest barrier to parasite development involved passage from the midgut into the hemocoel. The ratio of L3 to ingested mf at low densities was higher in An. hinesorum (yield = 1.0) and An. farauti s.s. (yield = 0.5) than has been reported in other anopheline vectors. There was a negative relationship between mosquito survival and bloodmeal mf density. In An. farauti s.s., increased parasite yield and survival at low densities suggest greater competence at low microfilaremias. In Papua New Guinea the likelihood of transmission will be strongly influenced by vector composition and changes in the mf reservoir as a result of elimination efforts. Global elimination efforts will be strengthened by the knowledge of transmission potential in the context of current control measures.  相似文献   

20.
Avian malaria studies have taken a prominent place in different aspects of evolutionary ecology. Despite a recent interest in the role of vectors within the complex interaction system of the malaria parasite, they have largely been ignored in most epidemiological studies. Epidemiology of the disease is however strongly related to the vector's ecology and behaviour, and there is a need for basic investigations to obtain a better picture of the natural associations between Plasmodium lineages, vector species and bird hosts. The aim of the present study was to identify the mosquito species involved in the transmission of the haemosporidian parasites Plasmodium spp. in two wild populations of breeding great tits (Parus major) in western Switzerland. Additionally, we compared Plasmodium lineages, based on mitochondrial DNA cytochrome b sequences, between the vertebrate and dipteran hosts, and evaluated the prevalence of the parasite in the mosquito populations. Plasmodium spp. were detected in Culex pipiens only, with an overall 6.6% prevalence. Among the six cytochrome b lineages of Plasmodium identified in the mosquitoes, three were also present in great tits. The results provide evidence for the first time that C. pipiens can act as a natural vector of avian malaria in Europe and yield baseline data for future research on the epidemiology of avian malaria in European countries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号