首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Perturbing the structure of the Pin1 WW domain, a 34-residue protein comprised of three beta-strands and two intervening loops has provided significant insight into the structural and energetic basis of beta-sheet folding. We will review our current perspective on how structure acquisition is influenced by the sequence, which determines local conformational propensities and mediates the hydrophobic effect, hydrogen bonding, and analogous intramolecular interactions. We have utilized both traditional site-directed mutagenesis and backbone mutagenesis approaches to alter the primary structure of this beta-sheet protein. Traditional site-directed mutagenesis experiments are excellent for altering side-chain structure, whereas amide-to-ester backbone mutagenesis experiments modify backbone-backbone hydrogen bonding capacity. The transition state structure associated with the folding of the Pin1 WW domain features a partially H-bonded, near-native reverse turn secondary structure in loop 1 that has little influence on thermodynamic stability. The thermodynamic stability of the Pin1 WW domain is largely determined by the formation of a small hydrophobic core and by the formation of desolvated backbone-backbone H-bonds enveloped by this hydrophobic core. Loop 1 engineering to the consensus five-residue beta-bulge-turn found in most WW domains or a four-residue beta-turn found in most beta-hairpins accelerates folding substantially relative to the six-residue turn found in the wild type Pin1 WW domain. Furthermore, the more efficient five- and four-residue reverse turns now contribute to the stability of the three-stranded beta-sheet. These insights have allowed the design of Pin1 WW domains that fold at rates that approach the theoretical speed limit of folding.  相似文献   

2.
We have used distributed computing techniques and a supercluster of thousands of computer processors to study folding of the C-terminal beta-hairpin from protein G in atomistic detail using the GB/SA implicit solvent model at 300 K. We have simulated a total of nearly 38 micros of folding time and obtained eight complete and independent folding trajectories. Starting from an extended state, we observe relaxation to an unfolded state characterized by non-specific, temporary hydrogen bonding. This is followed by the appearance of interactions between hydrophobic residues that stabilize a bent intermediate. Final formation of the complete hydrophobic core occurs cooperatively at the same time that the final hydrogen bonding pattern appears. The folded hairpin structures we observe all contain a closely packed hydrophobic core and proper beta-sheet backbone dihedral angles, but they differ in backbone hydrogen bonding pattern. We show that this is consistent with the existing experimental data on the hairpin alone in solution. Our analysis also reveals short-lived semi-helical intermediates which define a thermodynamic trap. Our results are consistent with a three-state mechanism with a single rate-limiting step in which a varying final hydrogen bond pattern is apparent, and semi-helical off-pathway intermediates may appear early in the folding process. We include details of the ensemble dynamics methodology and a discussion of our achievements using this new computational device for studying dynamics at the atomic level.  相似文献   

3.
The NMR solution structure of the PinA WW domain from Aspergillus nidulans is presented. The backbone of the PinA WW domain is composed of a triple-stranded anti-parallel beta-sheet and an alpha-helix similar to Ess1 and Pin1 without the alpha-helix linker. Large RMS deviations in Loop I were observed both from the NMR structures and molecular dynamics simulation suggest that the Loop I of PinA WW domain is flexible and solvent accessible, thus enabling it to bind the pS/pT-P motif. The WW domain in this structure are stabilised by a hydrophobic core. It is shown that the linker flexibility of PinA is restricted because of an alpha-helical structure in the linker region. The combination of NMR structural data and detailed Molecular Dynamics simulations enables a comprehensive structural and dynamic understanding of this protein.  相似文献   

4.
We use molecular dynamics simulation to study the aggregation of Src SH3 domain proteins. For the case of two proteins, we observe two possible aggregation conformations: the closed form dimer and the open aggregation state. The closed dimer is formed by "domain swapping"-the two proteins exchange their RT-loops. All the hydrophobic residues are buried inside the dimer so proteins cannot further aggregate into elongated amyloid fibrils. We find that the open structure-stabilized by backbone hydrogen bond interactions-packs the RT-loops together by swapping the two strands of the RT-loop. The packed RT-loops form a beta-sheet structure and expose the backbone to promote further aggregation. We also simulate more than two proteins, and find that the aggregate adopts a fibrillar double beta-sheet structure, which is formed by packing the RT-loops from different proteins. Our simulations are consistent with a possible generic amyloidogenesis scenario.  相似文献   

5.
6.
Outer surface protein A (OspA) from Borrelia burgdorferi is a predominantly beta-sheet protein comprised of beta-strands beta1-beta21 and a short C-terminal alpha-helix. It contains two globular domains (N and C-terminal domains) and a unique single-layer beta-sheet (central beta-sheet) that connects the two domains. OspA contains an unusually large number of charged amino acid residues. To understand the mechanism of stabilization of this unique beta-sheet protein, thorough thermodynamic investigations of OspA and its truncated mutant lacking a part of the C-terminal domain were conducted using calorimetry and circular dichroism. The stability of OspA was found to be sensitive to pH and salt concentration. The heat capacity curve clearly consisted of two components, and all the thermodynamic parameters were obtained for each step. The thermodynamic parameters associated with the two transitions are consistent with a previously proposed model, in which the first transition corresponds to the unfolding of the C-terminal domain and the last two beta-strands of the central beta-sheet, and the second transition corresponds to that of the N-terminal domain and the first beta-strand of the central beta-sheet in the second peak. The ratio of calorimetric and van't Hoff enthalpies indicates that the first peak includes another thermodynamic intermediate state. Large heat capacity changes were observed for both transitions, indicative of large changes in the exposure of hydrophobic surfaces associated with the transitions. This observation demonstrates that hydrophobic parts are buried efficiently in the native structure in spite of the low content of hydrophobic residues in OspA. By decomposing the enthalpy, entropy, and Gibbs free energy into contributions from different interactions, we found that the enthalpy changes for hydrogen bonding and polar interactions are exceptionally large, indicating that OspA maintains its stability by making full use of its unique beta-sheet and high content of polar residues. These thermodynamic analyses demonstrated that it is possible to maintain protein tertiary structure by making effective use of an unusual amino acid composition.  相似文献   

7.
Through the development of a procedure to measure when hydrogen bonds form under two-state folding conditions, alpha-helices have been determined to form proportionally to denaturant-sensitive surface area buried in the transition state. Previous experiments assessing H/D isotope effects are applied to various model proteins, including lambda and Arc repressor variants, a coiled coil domain, cytochrome c, colicin immunity protein 7, proteins L and G, acylphosphatase, chymotrypsin inhibitor II and a Src SH3 domain. The change in free energy accompanied by backbone deuteration is highly correlated to secondary structure composition when hydrogen bonds are divided into two classes. The number of helical hydrogen bonds correlates with an average equilibrium isotope effect of 8.6 +/- 0.9 cal x mol(-1) x site(-1). However, beta-sheet and long-range hydrogen bonds have little isotope effect. The kinetic isotope effects support our hypothesis that, for helical proteins, hydrophobic association cannot be separated from helix formation in the transition state. Therefore, folding models that describe an incremental build-up of structure in which hydrophobic burial and hydrogen bond formation occur commensurately are more consistent with the data than are models that posit the extensive formation of one quantity before the other.  相似文献   

8.
The WW domain is known as one of the smallest protein modules with a triple-stranded beta-sheet fold. Here, we present the solution structure of the second WW domain from the mouse salvador homolog 1 protein. This WW domain forms a homodimer with a beta-clam-like motif, as evidenced by size exclusion chromatography, analytical ultracentrifugation and NMR spectroscopy. While typical WW domains are believed to function as monomeric modules that recognize proline-rich sequences, by using conserved aromatic and hydrophobic residues that are solvent-exposed on the surface of the beta-sheet, this WW domain buries these residues in the dimer interface.  相似文献   

9.
The WW domain is an approximately 38 residue peptide-binding motif that binds a variety of sequences, including the consensus sequence xPPxY. We have displayed hYAP65 WW on the surface of M13 phage and randomized one-third of its three-stranded antiparallel beta-sheet. Improved binding to the hydrophobic peptide, GTPPPPYTVG (WW1), was selected in the presence of three different concentrations of proteinase K to simultaneously drive selection for improved stability as well as high-affinity binding. While some of the selected binders show cooperative unfolding transitions, others show noncooperative thermal unfolding curves. Two novel WW consensus sequences have been identified, which bind to the xPPxY motif with higher affinity than the wild-type hYAP65 WW domain. These WW domain sequences are not precedented in any natural WW domain sequence. Thus, there appear to be a large number of motifs capable of recognizing the target peptide sequence, only a subset of which appear to be used in natural proteins.  相似文献   

10.
Using the human Pin1 WW domain (hPin1 WW), we show that replacement of two nearest neighbor non-hydrogen-bonded residues on adjacent beta-strands with tryptophan (Trp) residues increases beta-sheet thermodynamic stability by 4.8 kJ mol(-1) at physiological temperature. One-dimensional NMR studies confirmed that introduction of the Trp-Trp pair does not globally perturb the structure of the triple-stranded beta-sheet, while circular dichroism studies suggest that the engineered cross-strand Trp-Trp pair adopts a side-chain conformation similar to that first reported for a designed "Trp-zipper" beta-hairpin peptide, wherein the indole side chains stack perpendicular to each other. Even though the mutated side chains in wild-type hPin1 WW are not conserved among WW domains and compose the beta-sheet surface opposite to that responsible for ligand binding, introduction of the cross-strand Trp-Trp pair effectively eliminates hPin1 WW function as assessed by the loss of binding affinity toward a natural peptide ligand. Maximizing both thermodynamic stability and the domain function of hPin1 WW by the above mentioned approach appears to be difficult, analogous to the situation with loop 1 optimization explored previously. That introduction of a non-hydrogen-bonded cross-strand Trp-Trp pair within the hPin1 WW domain eliminates function may provide a rationale for why this energetically favorable pairwise interaction has not yet been identified in WW domains or any other biologically evolved protein with known three-dimensional structure.  相似文献   

11.
The WW domain consists of approximately 40 residues, has no disulfide bridges, and forms a three-stranded antiparallel beta-sheet that is monomeric in solution. It thus provides a model system for studying beta-sheet stability in native proteins. We performed molecular dynamics simulations of two WW domains, YAP65 and FBP28, with very different stability characteristics, in order to explore the initial unfolding of the beta-sheet. The less stable YAP domain is much more sensitive to simulation conditions than the FBP domain. Under standard simulation conditions in water (with or without charge-balancing counterions) at 300 K, the beta-sheet of the YAP WW domain disintegrated at early stages of the simulations. Disintegration commenced with the breakage of a hydrogen bond between the second and third strands of the beta-sheet due to an anticorrelated transition of the Tyr-28 psi and Phe-29 phi angles. Electrostatic interactions play a role in this event, and the YAP WW domain structure is more stable when simulated with a complete explicit model of the surrounding ionic strength. Other factors affecting stability of the beta-sheet are side-chain packing, the conformational entropy of the flexible chain termini, and the binding of cognate peptide.  相似文献   

12.
The NMR solution structure of the isolated Apo Pin1 WW domain (6-39) reveals that it adopts a twisted three-stranded antiparallel beta-sheet conformation, very similar to the structure exhibited by the crystal of this domain in the context of the two domain Pin1 protein. While the B factors in the apo x-ray crystal structure indicate that loop 1 and loop 2 are conformationally well defined, the solution NMR data suggest that loop 1 is quite flexible, at least in the absence of the ligand. The NMR chemical shift and nuclear Overhauser effect pattern exhibited by the 6-39 Pin1 WW domain has proven to be diagnostic for demonstrating that single site variants of this domain adopt a normally folded structure. Knowledge of this type is critical before embarking on time-consuming kinetic and thermodynamic studies required for a detailed understanding of beta-sheet folding.  相似文献   

13.
Here we investigate the role of backbone-backbone hydrogen bonding interactions in stabilizing the protein folding transition states of two model protein systems, the B1 domain of protein L (ProtL) and the P22 Arc repressor. A backbone modified analogue of ProtL containing an amide-to-ester bond substitution between residues 105 and 106 was prepared by total chemical synthesis, and the thermodynamic and kinetic parameters associated with its folding reaction were evaluated. Ultimately, these parameters were used in a Phi-value analysis to determine if the native backbone-backbone hydrogen bonding interaction perturbed in this analogue (i.e. a hydrogen bond in the first beta-turn of ProtL's beta-beta-alpha-beta-beta fold) was formed in the transition state of ProtL's folding reaction. Also determined were the kinetic parameters associated with the folding reactions of two Arc repressor analogues, each containing an amide-to-ester bond substitution in the backbone of their polypeptide chains. These parameters were used together with previously established thermodynamic parameters for the folding of these analogues in Phi-value analyses to determine if the native backbone-backbone hydrogen bonding interactions perturbed in these analogues (i.e. a hydrogen bond at the end of the intersubunit beta-sheet interface and hydrogen bonds at the beginning of the second alpha-helix in Arc repressor's beta-alpha-alpha structure) were formed in the transition state of Arc repressor's folding reaction. Our results reveal that backbone-backbone hydrogen bonding interactions are formed in the beta-turn and alpha-helical transition state structures of ProtL and Arc repressor, respectively; and they were not formed in the intersubunit beta-sheet interface of Arc repressor, a region of Arc repressor's polypeptide chain previously shown to have other non-native-like conformations in Arc's protein folding transition state.  相似文献   

14.
We have recently reported on the design of a 20-residue peptide able to form a significant population of a three-stranded up-and-down antiparallel beta-sheet in aqueous solution. To improve our beta-sheet model in terms of the folded population, we have modified the sequences of the two 2-residue turns by introducing the segment DPro-Gly, a sequence shown to lead to more rigid type II' beta-turns. The analysis of several NMR parameters, NOE data, as well as Deltadelta(CalphaH), DeltadeltaC(beta), and Deltadelta(Cbeta) values, demonstrates that the new peptide forms a beta-sheet structure in aqueous solution more stable than the original one, whereas the substitution of the DPro residues by LPro leads to a random coil peptide. This agrees with previous results on beta-hairpin-forming peptides showing the essential role of the turn sequence for beta-hairpin folding. The well-defined beta-sheet motif calculated for the new designed peptide (pair-wise RMSD for backbone atoms is 0.5 +/- 0.1 A) displays a high degree of twist. This twist likely contributes to stability, as a more hydrophobic surface is buried in the twisted beta-sheet than in a flatter one. The twist observed in the up-and-down antiparallel beta-sheet motifs of most proteins is less pronounced than in our designed peptide, except for the WW domains. The additional hydrophobic surface burial provided by beta-sheet twisting relative to a "flat" beta-sheet is probably more important for structure stability in peptides and small proteins like the WW domains than in larger proteins for which there exists a significant contribution to stability arising from their extensive hydrophobic cores.  相似文献   

15.
An N-terminally truncated and cooperatively folded version (residues 6-39) of the human Pin1 WW domain (hPin1 WW hereafter) has served as an excellent model system for understanding triple-stranded beta-sheet folding energetics. Here we report that the negatively charged N-terminal sequence (Met1-Ala-Asp-Glu-Glu5) previously deleted, and which is not conserved in highly homologous WW domain family members from yeast or certain fungi, significantly increases the stability of hPin1 WW (approximately 4 kJ mol(-1) at 65 degrees C), in the context of the 1-39 sequence based on equilibrium measurements. N-terminal truncations and mutations in conjunction with a double mutant cycle analysis and a recently published high-resolution X-ray structure of the hPin1 cis/trans-isomerase suggest that the increase in stability is due to an energetically favorable ionic interaction between the negatively charged side chains in the N terminus of full-length hPin1 WW and the positively charged epsilon-ammonium group of residue Lys13 in beta-strand 1. Our data therefore suggest that the ionic interaction between Lys13 and the charged N terminus is the optimal solution for enhanced stability without compromising function, as ascertained by ligand binding studies. Kinetic laser temperature-jump relaxation studies reveal that this stabilizing interaction has not formed to a significant extent in the folding transition state at near physiological temperature, suggesting a differential contribution of the negatively charged N-terminal sequence to protein stability and folding rate. As neither the N-terminal sequence nor Lys13 are highly conserved among WW domains, our data further suggest that caution must be exercised when selecting domain boundaries for WW domains for structural, functional, or thermodynamic studies.  相似文献   

16.
Espinosa JF  Syud FA  Gellman SH 《Biopolymers》2005,80(2-3):303-311
WW domains are broadly distributed among natural proteins; these modules play a role in bringing specific proteins together. The ligands recognized by WW domains are short segments rich in proline residues. We have tried to identify the minimum substructure within a WW domain that is required for ligand binding. WW domains typically comprise ca. 40 residues and fold to a three-stranded beta-sheet. Structural data for several WW domain/ligand complexes suggest that most or all of the intermolecular contacts involve beta-strands 2 and 3. We have developed a 16-residue peptide that folds to a beta-hairpin conformation that appears to mimic beta-strands 2 and 3 of the human YAP65 WW domain, but this peptide does not bind to known ligands. Thus, the minimum binding domain is larger than the latter two strands of the WW domain beta-sheet.  相似文献   

17.
The folding kinetics of a three-stranded antiparallel beta-sheet (WW domain) have been measured by temperature jump relaxation. Folding and activation free energies were determined as a function of temperature for both the wild-type and the mutant domain, W39F, which modifies the beta(2)-beta(3) hydrophobic interface. The folding rate decreases at higher temperatures as a result of the increase in the activation free energy for folding. Phi-Values were obtained for thermal perturbations allowing the primary features of the folding free energy surface to be determined. The results of this analysis indicate a significant shift from an "early" (Phi(T)=0. 4) to a "late" (Phi(T)=0.8) transition state with increasing temperature. The temperature-dependent Phi-value analysis of the wild-type WW domain and of its more stable W39F hydrophobic cluster mutant reveals little participation of residue 39 in the transition state at lower temperature. As the temperature is raised, hydrophobic interactions at the beta(2)-beta(3) interface gain importance in the transition state and the barrier height of the wild-type, which contains the larger tryptophan residue, increases more slowly than the barrier height of the mutant.  相似文献   

18.
This study shows that a combination of sequence homology and structural information can be used to increase the stability of the WW domain by 2.5 kcal mol(-1) and increase the T(m) by 28 degrees C. Previous homology-based protein design efforts typically investigate positions with low sequence identity, whereas this study focuses on semi-conserved core residues and proximal residues, exploring their role(s) in mediating stabilizing interactions on the basis of structural considerations. The A20R and L30Y mutations allow increased hydrophobic interactions because of complimentary surfaces and an electrostatic interaction with a third residue adjacent to the ligand-binding hydrophobic cluster, increasing stability significantly beyond what additivity would predict for the single mutations. The D34T mutation situated in a pi-turn possibly disengages Asn31, allowing it to make up to three hydrogen bonds with the backbone in strand 1 and loop 2. The synergistic mutations A20R/L30Y in combination with the remotely located mutation D34T add together to create a hYap WW domain that is significantly more stable than any of the protein structures on which the design was based (Pin and FBP28 WW domains).  相似文献   

19.
The 37-residue Formin-binding protein, FBP28, is a canonical three-stranded beta-sheet WW domain. Because of its small size, it is so insensitive to chemical denaturation that it is barely possible to determine accurately a denaturation curve, as the transition spans 0-7 M guanidinium hydrochloride (GdmCl). It is also only marginally stable, with a free energy of denaturation of just 2.3 kcal/mol at 10 degrees Celsius so only small changes in energy upon mutation can be tolerated. But these properties and relaxation times for folding of 25 micros-400 micros conspire to allow the rapid acquisition of accurate and reproducible kinetic data for Phi-analysis using classical temperature-jump methods. The transition state for folding is highly polarized with some regions having Phi-values of 0 and others 1, as readily seen in chevron plots, with Phi-values of 0 having the refolding arms overlaying and those of 1 the unfolding arms superimposable. Good agreement is seen with transition state structures identified from independent molecular dynamics (MD) simulations at 60, 75, and 100 degrees Celsius, which allows us to explore further the details of the folding and unfolding pathway of FBP28. The first beta-turn is near native-like in the transition state for folding (experimental) and unfolding (MD and experiment). The simulations show that there are transient contacts between the aromatic side-chains of the beta-strands in the denatured state and that these interactions provide the driving force for folding of the first beta-hairpin of this three-stranded sheet. Only after the backbone hydrogen bonds are formed between beta1 and beta2 does a hydrogen bond form to stabilize the intervening turn, or the first beta-turn.  相似文献   

20.
A good approach to test our current knowledge on formation of protein beta-sheets is de novo protein design. To obtain a three-stranded beta-sheet mini-protein, we have built a series of chimeric peptides by taking as a template a previously designed beta-sheet peptide, Betanova-LLM, and incorporating N- and/or C-terminal extensions taken from WW domains, the smallest natural beta-sheet domain that is stable in absence of disulfide bridges. Some Betanova-LLM strand residues were also substituted by those of a prototype WW domain. The designed peptides were cloned and expressed in Escherichia coli. The ability of the purified peptides to adopt beta-sheet structures was examined by circular dichroism (CD). Then, the peptide showing the highest beta-sheet population according to the CD spectra, named 3SBWW-2, was further investigated by 1H and 13C NMR. Based on NOE and chemical shift data, peptide 3SBWW-2 adopts a well defined three-stranded antiparallel beta-sheet structure with a disordered C-terminal tail. To discern between the contributions to beta-sheet stability of strand residues and the C-terminal extension, the structural behavior of a control peptide with the same strand residues as 3SBWW-2 but lacking the C-terminal extension, named Betanova-LYYL, was also investigated. beta-Sheet stability in these two peptides, in the parent Betanova-LLM and in WW-P, a prototype WW domain, decreased in the order WW-P > 3SBWW-2 > Betanova-LYYL > Betanova-LLM. Conclusions about the contributions to beta-sheet stability were drawn by comparing structural properties of these four peptides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号