首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
To study flower development in the model legume Lotus japonicus, a population of transgenic plants containing a maize transposable element (Ac) in their genome was screened for floral mutants. One mutation named proliferating floral organs (pfo) causes plants to produce a large number of sepal-like organs instead of normal flowers. It segregates as a single recessive Mendelian locus, and causes sterility. Scanning electron microscopy revealed that pfo affects the identity, number and arrangement of floral organs. Sepal-like organs form in the first whorl, and secondary floral meristems are produced in the next whorl. These in turn produce sepal-like organs in the first whorl and floral meristems in the second whorl, and the process is reiterated. Petals and stamens are absent while carpels are either absent or reduced. The pfo phenotype was correlated with the presence of an Ac insertion yielding a 1.6-kb HindIII restriction fragment on Southern blots. Both the mutant phenotype and this Ac element are unstable. Using the transposon as a tag, the Pfo gene was isolated. Conceptual translation of Pfo predicts a protein containing an F-box, with high overall similarity to the Antirrhinum FIMBRIATA, Arabidopsis UNUSUAL FLORAL ORGANS and Pisum sativum Stamina pistilloida proteins. This suggests that Pfo may regulate floral organ identity and meristem determinacy by targeting proteins for ubiquitination.  相似文献   

3.
4.
5.
6.
H Huang  H Ma 《The Plant cell》1997,9(2):115-134
A novel gene that regulates floral meristem activity and controls floral organ number was identified in Arabidopsis and is designated FON1 (for FLORAL ORGAN NUMBER1). The fon1 mutants exhibit normal vegetative development and produce normal inflorescence meristems and immature flowers before stage 6. fon1 flowers become visibly different from wild-type flowers at stage 6, when the third-whorl stamen primordia have formed. The fon1 floral meristem functions longer than does that of the wild type: after the outer three-whorl organ primordia have initiated, the remaining central floral meristem continues to produce additional stamen primordia interior to the third whorl. Prolonged fon1 floral meristem activity also results in an increased number of carpels. The clavata (clv) mutations are known to affect floral meristem activity. We have analyzed the clv1 fon1, clv2 fon1, and clv3 fon1 double mutants. These double mutants all have similar phenotypes, with more stamens and carpels than either fon1 or clv single mutants. This indicates that FON1 and CLV genes function in different pathways to control the number of third- and fourth-whorl floral organs. In addition, to test for possible interactions between FON1 and other floral regulatory genes, we have constructed and analyzed the relevant double mutants. Our results suggest that FON1 does not interact with TERMINAL FLOWER1, APETALA1, APETALA2, or UNUSUAL FLORAL ORGAN. In contrast, normal LEAFY function is required for the expression of fon1 phenotypes. In addition, FON1 and AGAMOUS both seem to affect the domain of APETALA3 function, which also affects the formation of stamen-carpel chimera due to fon1 mutations. Finally, genetic analysis suggests that FON1 interacts with SUPERMAN, which also regulates floral meristem activity.  相似文献   

7.
8.
Floral organ identity genes in the orchid Dendrobium crumenatum   总被引:1,自引:0,他引:1  
Orchids are members of Orchidaceae, one of the largest families in the flowering plants. Among the angiosperms, orchids are unique in their floral patterning, particularly in floral structures and organ identity. The ABCDE model was proposed as a general model to explain flower development in diverse plant groups, however the extent to which this model is applicable to orchids is still unknown. To investigate the regulatory mechanisms underlying orchid flower development, we isolated candidates for A, B, C, D and E function genes from Dendrobium crumenatum. These include AP2-, PI/GLO-, AP3/DEF-, AG- and SEP-like genes. The expression profiles of these genes exhibited different patterns from their Arabidopsis orthologs in floral patterning. Functional studies showed that DcOPI and DcOAG1 could replace the functions of PI and AG in Arabidopsis, respectively. By using chimeric repressor silencing technology, DcOAP3A was found to be another putative B function gene. Yeast two-hybrid analysis demonstrated that DcOAP3A/B and DcOPI could form heterodimers. These heterodimers could further interact with DcOSEP to form higher protein complexes, similar to their orthologs in eudicots. Our findings suggested that there is partial conservation in the B and C function genes between Arabidopsis and orchid. However, gene duplication might have led to the divergence in gene expression and regulation, possibly followed by functional divergence, resulting in the unique floral ontogeny in orchids.  相似文献   

9.
10.
M Egea-Cortines  H Saedler    H Sommer 《The EMBO journal》1999,18(19):5370-5379
In Antirrhinum, floral meristems are established by meristem identity genes. Floral meristems give rise to floral organs in whorls, with their identity established by combinatorial activities of organ identity genes. Double mutants of the floral meristem identity gene SQUAMOSA and organ identity genes DEFICIENS or GLOBOSA produce flowers in which whorled patterning is partially lost. In yeast, SQUA, DEF and GLO proteins form ternary complexes via their C-termini, which in gel-shift assays show increased DNA binding to CArG motifs compared with DEF/GLO heterodimers or SQUA/SQUA homodimers. Formation of ternary complexes by plant MADS-box factors increases the complexity of their regulatory functions and might be the molecular basis for establishment of whorled phyllotaxis and combinatorial interactions of floral organ identity genes.  相似文献   

11.
12.
Screening for mutations that alter flower development in Arabidopsis has led to the identification of two general types of genetic loci: those affecting meristem and organ identity, and those affecting growth and development independent of identity. ettin (ett) mutants belong to the latter class and exhibit pleiotropic phenotypes distinct from previously described Arabidopsis mutants. These phenotypes include increases in sepal and petal number, decreases in stamen number and anther locule number, and gross alteration of tissue patterning in the gynoecium. To determine when and how differences in ett floral meristems originate, flower development was compared between the wild type and ett mutants. ett floral meristems exhibit increases in abaxial sepal and petal primordia number without apparent increases in meristem size. Extra sepal and petal primordia develop into normal organs. In contrast, stamen and carpel primordia exhibit alterations in shape and form, subsequent to premature elongation of the terminal floral meristem. Phenotypes are allele-strength dependent. The stigma develops precociously and style differentiation is basally and abaxially misplaced in ett gynoecia. The data are discussed in the context of a model suggesting that two concentric boundaries specify the apical-basal pattern of gynoecium differentiation.  相似文献   

13.
Gregis V  Sessa A  Colombo L  Kater MM 《The Plant cell》2006,18(6):1373-1382
Loss-of-function alleles of AGAMOUS-LIKE24 (AGL24) and SHORT VEGETATIVE PHASE (SVP) revealed that these two similar MADS box genes have opposite functions in controlling the floral transition in Arabidopsis thaliana, with AGL24 functioning as a promoter and SVP as a repressor. AGL24 promotes inflorescence identity, and its expression is downregulated by APETALA1 (AP1) and LEAFY to establish floral meristem identity. Here, we combine the two mutants to generate the agl24 svp double mutant. Analysis of flowering time revealed that svp is epistatic to agl24. Furthermore, when grown at 30 degrees C, the double mutant was severely affected in flower development. All four floral whorls showed homeotic conversions due to ectopic expression of class B and C organ identity genes. The observed phenotypes remarkably resembled the leunig (lug) and seuss (seu) mutants. Protein interaction studies showed that dimers composed of AP1-AGL24 and AP1-SVP interact with the LUG-SEU corepressor complex. We provide genetic evidence for the role of AP1 in these interactions by showing that the floral phenotype in the ap1 agl24 svp triple mutant is significantly enhanced. Our data suggest that MADS box proteins are involved in the recruitment of the SEU-LUG repressor complex for the regulation of AGAMOUS.  相似文献   

14.
The ABC model of flower organ identity is widely recognized as providing a framework for understanding the specification of flower organs in diverse plant species. Recent studies in Arabidopsis thaliana have shown that three closely related MADS-box genes, SEPALLATA1 (SEP1), SEP2 and SEP3, are required to specify petals, stamens, and carpels because these organs are converted into sepals in sep1 sep2 sep3 triple mutants. Additional studies indicate that the SEP proteins form multimeric complexes with the products of the B and C organ identity genes. Here, we characterize the SEP4 gene, which shares extensive sequence similarity to and an overlapping expression pattern with the other SEP genes. Although sep4 single mutants display a phenotype similar to that of wild-type plants, we find that floral organs are converted into leaf-like organs in sep1 sep2 sep3 sep4 quadruple mutants, indicating the involvement of all four SEP genes in the development of sepals. We also find that SEP4 contributes to the development of petals, stamens, and carpels in addition to sepals and that it plays an important role in meristem identity. These and other data demonstrate that the SEP genes play central roles in flower meristem identity and organ identity.  相似文献   

15.
The NOOT‐BOP‐COCH‐LIKE (NBCL) genes are orthologs of Arabidopsis thaliana BLADE‐ON‐PETIOLE1/2. The NBCLs are developmental regulators essential for plant shaping, mainly through the regulation of organ boundaries, the promotion of lateral organ differentiation and the acquisition of organ identity. In addition to their roles in leaf, stipule and flower development, NBCLs are required for maintaining the identity of indeterminate nitrogen‐fixing nodules with persistent meristems in legumes. In legumes forming determinate nodules, without persistent meristem, the roles of NBCL genes are not known. We thus investigated the role of Lotus japonicus NOOT‐BOP‐COCH‐LIKE1 (LjNBCL1) in determinate nodule identity and studied its functions in aerial organ development using LORE1 insertional mutants and RNA interference‐mediated silencing approaches. In Lotus, LjNBCL1 is involved in leaf patterning and participates in the regulation of axillary outgrowth. Wild‐type Lotus leaves are composed of five leaflets and possess a pair of nectaries at the leaf axil. Legumes such as pea and Medicago have a pair of stipules, rather than nectaries, at the base of their leaves. In Ljnbcl1, nectary development is abolished, demonstrating that nectaries and stipules share a common evolutionary origin. In addition, ectopic roots arising from nodule vascular meristems and reorganization of the nodule vascular bundle vessels were observed on Ljnbcl1 nodules. This demonstrates that NBCL functions are conserved in both indeterminate and determinate nodules through the maintenance of nodule vascular bundle identity. In contrast to its role in floral patterning described in other plants, LjNBCL1 appears essential for the development of both secondary inflorescence meristem and floral meristem.  相似文献   

16.
? The CUP-SHAPED COTYLEDON (CUC)/NO APICAL MERISTEM (NAM) family of genes control boundary formation and lateral organ separation, which is critical for proper leaf and flower patterning. However, most downstream targets of CUC/NAM genes remain unclear. ? In a forward screen of the tobacco retrotransposon1 (Tnt1) insertion population in Medicago truncatula, we isolated a weak allele of the no-apical-meristem mutant mtnam-2. Meanwhile, we regenerated a mature plant from the null allele mtnam-1. These materials allowed us to extensively characterize the function of MtNAM and its downstream genes. ? MtNAM is highly expressed in vegetative shoot buds and inflorescence apices, specifically at boundaries between the shoot apical meristem and leaf/flower primordia. Mature plants of the regenerated null allele and the weak allele display remarkable floral phenotypes: floral whorls and organ numbers are reduced and the floral organ identity is compromised. Microarray and quantitative RT-PCR analyses revealed that all classes of floral homeotic genes are down-regulated in mtnam mutants. Mutations in MtNAM also lead to fused cotyledons and leaflets of the compound leaf as well as a defective shoot apical meristem. ? Our results revealed that MtNAM shares the role of CUC/NAM family genes in lateral organ separation and compound leaf development, and is also required for floral organ identity and development.  相似文献   

17.
18.
SQUAMOSA and APETALA1 are floral meristem identity genes from snapdragon (Antirrhinum majus) and Arabidopsis, respectively. Here, we characterize the floral meristem identity mutation proliferating inflorescence meristem (pim) from pea (Pisum sativum) and show that it corresponds to a defect in the PEAM4 gene, a homolog of SQUAMOSA and APETALA1. The PEAM4 coding region was deleted in the pim-1 allele, and this deletion cosegregated with the pim-1 mutant phenotype. The pim-2 allele carried a nucleotide substitution at a predicted 5' splice site that resulted in mis-splicing of pim-2 mRNA. PCR products corresponding to unspliced and exon-skipped mRNA species were observed. The pim-1 and pim-2 mutations delayed floral meristem specification and altered floral morphology significantly but had no observable effect on vegetative development. These floral-specific mutant phenotypes and the restriction of PIM gene expression to flowers contrast with other known floral meristem genes in pea that additionally affect vegetative development. The identification of PIM provides an opportunity to compare pathways to flowering in species with different inflorescence architectures.  相似文献   

19.
Postembryonic organ formation in higher plants relies on the activity of stem cell niches in shoot and root meristems where differentiation of the resident cells is repressed by signals from surrounding cells. We searched for mutations affecting stem cell maintenance and isolated the semidominant l28 mutant, which displays premature termination of the shoot meristem and differentiation of the stem cells. Allele competition experiments suggest that l28 is a dominant-negative allele of the APETALA2 (AP2) gene, which previously has been implicated in floral patterning and seed development. Expression of both WUSCHEL (WUS) and CLAVATA3 (CLV3) genes, which regulate stem cell maintenance in the wild type, were disrupted in l28 shoot apices from early stages on. Unlike in floral patterning, AP2 mRNA is active in the center of the shoot meristem and acts via a mechanism independent of AGAMOUS, which is a repressor of WUS and stem cell maintenance in the floral meristem. Genetic analysis shows that termination of the primary shoot meristem in l28 mutants requires an active CLV signaling pathway, indicating that AP2 functions in stem cell maintenance by modifying the WUS-CLV3 feedback loop.  相似文献   

20.
Three ways to learn the ABCs   总被引:12,自引:0,他引:12  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号