首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Small heat shock proteins (sHsps) usually exist as oligomers that undergo dynamic oligomeric dissociation/re-association, with the dissociated oligomers as active forms to bind substrate proteins under heat shock conditions. In this study, however, we found that Hsp16.3, one sHsp from Mycobacterium tuberculosis, is able to sensitively modulate its chaperone-like activity in a range of physiological temperatures (from 25 to 37.5 degrees C) while its native oligomeric size is still maintained. Further analysis demonstrated that Hsp16.3 exposes higher hydrophobic surfaces upon temperatures increasing and that a large soluble complex between Hsp16.3 and substrate is formed only in the condition of heating temperature up to 35 and 37.5 degrees C. Structural analysis by fluorescence anisotropy showed that Hsp16.3 nonameric structure becomes more dynamic and variable at elevated temperatures. Moreover, subunit exchange between Hsp16.3 oligomers was found to occur faster upon temperatures increasing as revealed by fluorescence energy resonance transfer. These observations indicate that Hsp16.3 is able to modulate its chaperone activity by adjusting the dynamics of oligomeric dissociation/re-association process while maintaining its static oligomeric size unchangeable. A kinetic model is therefore proposed to explain the mechanism of sHsps-binding substrate proteins through oligomeric dissociation. The present study also implied that Hsp16.3 is at least capable of binding non-native proteins in vivo while expressing in the host organism that survives at 37 degrees C.  相似文献   

2.
Small heat shock proteins (sHSPs), as one important subclass of molecular chaperones, are able to specifically bind to denatured substrate proteins rather than to native proteins, of which their substrate-binding sites are far from clear. Our previous study showed an overlapping nature of the sites for both hydrophobic probe 1,1'-Bi(4-anilino)naphthalene-5,5'-disulfonic acid (bis-ANS) binding and substrate binding in Mycobacterium tuberculosis Hsp16.3 [X. Fu, H. Zhang, X. Zhang, Y. Cao, W. Jiao, C. Liu, Y. Song, A. Abulimiti, Z. Chang, A dual role for the N-terminal region of M. tuberculosis Hsp16.3 in self-oligomerization and binding denaturing substrate proteins, J. Biol. Chem. 280 (2005) 6337-6348]. In this work, two bis-ANS binding sites in Hsp16.3 were identified by a combined use of reverse phase HPLC, mass spectroscopy and N-terminal protein sequencing. One site is in the N-terminal region and the other one in the N-terminus of alpha-crystallin domain, both of which are similar to those identified so far in sHSPs. However, accumulating data suggest that these two sites differentially function in binding substrate proteins. With regard to this difference, we proposed a two-step mechanism by which Hsp16.3 binds substrate proteins, i.e., substrate proteins are recognized and initially captured by the N-terminal region that is exposed in the dissociated Hsp16.3 oligomers, and then the captured substrate proteins are further stabilized in the complex by the subsequent binding of the N-terminus of alpha-crystallin domain.  相似文献   

3.
1. 1. We examined rodent cells transfected with an expression plasmid encoding a human small heat shock protein for possible compensatory expression of endogenous heat shock genes. For these investigations, human hsp27 was transfected into CHO cells which express endogenous HSP25.
2. 2. Both endogenous HSP25 and transfected HSP27 were expressed and multiple phosphorylated isoforms were detected upon exposure to thermal stress.
3. 3. Levels of endogenous HSP70 and HSP25 did not appear to be altered by expression of the heterologous heat shock protein.
4. 4. These results suggest that compensatory interactions are not exhibited in the expression of the heat shock genes examined, and that independent regulation may exist not only between the large and small heat shock proteins, but also between individual small heat shock proteins as well.
  相似文献   

4.
Lipid rafts and associated membrane proteins (flotillin, caveolin) play important roles in cell signaling and sperm fertilization while heat shock proteins (Hsp) ensure properly protein folding to fulfill their physiological functions. The markedly reduced fertility in thawed sperm after cryopreservation could result from disrupted membrane lipid rafts and these proteins. To explore the effect of sperm cryopreservation on lipid rafts and heat shock proteins, we compared lipid raft integrity, and the expression levels of lipid raft associated proteins (Flot-1, Flot-2, Cav-1) as well as heat shock proteins (Hsp90, Hsp70) in fresh and thawed sperm cryopreserved under different scenarios in yellow catfish. We found higher lipid raft integrity, higher protein expression levels of Flot-1, Flot-2, Cav-1, Hsp90, and Hsp70 in fresh sperm samples than in thawed sperm samples, in thawed sperm samples cryopreserved with optimal cooling rate than those cryopreserved with sub-optimal cooling rate, and in thawed sperm samples cryopreserved with extenders supplemented with cholesterol than those supplemented with methyl-β-cyclodextrin (for cholesterol removal). Our findings indicate that lipid raft integrity, and expression levels of Flot-1, Flot-2, Cav-1, Hsp90, and Hsp70 are clearly associated with sperm quality, and together they may play a cumulative role in reduced fertility associated with thawed sperm in aquatic species.  相似文献   

5.
Hsp16.3, a small heat shock protein from Mycobacterium tuberculosis (MTB), was originally identified as an immuno-dominant antigen and later found to be a major membrane protein. In vitro studies show that Hsp16.3 exists as nonamers and undergoes dynamic dissociation/re-association equilibrium in solutions. Nevertheless, neither the details nor the physiological implications of the presence of Hsp16.3 in the plasma membrane have been studied. In this study, we demonstrated that the purified Hsp16.3 proteins were able to interact with the MTB plasma membrane in a specific and reversible manner, suggesting that there might be subunit exchange between membrane-bound Hsp16.3 and soluble Hsp16.3 oligomers. The dissociation of Hsp16.3 oligomers appears to be a prerequisite for its membrane binding, which is interesting in view that the dissociation of small heat shock protein oligomers was also found to be necessary for it to bind denaturing substrate proteins. Furthermore, the oligomeric structure of Hsp16.3 seems to be more dynamic and flexible when incubating with the mycobacterium lipids. The physiological implications of these observations for Hsp16.3, and small heat shock proteins in general, are discussed.  相似文献   

6.
Mycobacterium tuberculosis (TB) small heat shock protein Hsp16.3 was found to be a major membrane protein that is most predominantly expressed under oxidative stress and is localized to the thickened cell envelope. Gene knock-out studies indicate that the Hsp16.3 protein is required for TB to grow in its host macrophage cells. The physiological function of Hsp16.3 has not yet revealed. Our analyses via mass spectrometry, conformation-dependent trypsin digestion, nondenaturing pore gradient electrophoresis, ANS-binding fluorescence measurements, and circular dichroism demonstrate that the three and only the three methionine residues (cysteine and tryptophan residues, which can also be readily oxidized by such oxidant as H(2)O(2), are absent in Hsp16.3) can be readily sulfoxidized with H(2)O(2) treatment in vitro, and the methionine sulfoxide can be effectively reduced back to the methionine form. Interconversion between the methionine and methioninesulfoxide has been confirmed by selective oxidation and reduction. The sulfoxidation leads to a small degree of conformational change, which in turn results in a significant decrease of the chaperone-like activity. Data presented in this report strongly implicate that reversible sulfoxidation/desulfoxidation of methionine residues may occur in Hsp16.3, which serves as a way to scavenger reactive oxygen or nitrogen species abundantly present in macrophage cells, thus protecting the plasma membrane and other components of M. tuberculosis allowing their survival in such bacteriocidal hosts.  相似文献   

7.
Small heat shock protein16.3 (sHSP16.3) is a crucial protein for survival of Mycobacterium tuberculosis (MTB) in its host. Besides, this protein acts as a molecular chaperone during stress and is indispensable for MTB’s growth, virulence and cell-wall thickening. sHSP16.3 is also a promising candidate for vaccine, serodiagnosis and drug design as well. In the present study, we have targeted sHSP16.3 with two phytochemicals, namely ursolic acid and carvacrol using in silico approach. Molecular docking analysis showed that both phytochemicals (ursolic acid and carvacrol) have docked with sHSP16.3 and shown tendency to inhibit the function of this vital protein of MTB. In addition, both compounds have exhibited strong compatibility with sHSP16.3 during whole 60 ns duration of molecular dynamics simulation. Further, the molecular mechanic/generalized Born/Poisson–Boltzmann surface area (MM/G/P/BSA) free energies were calculated which showed that both phytocompounds have stable and favourable binding energies causing strong binding with binding site of sHSP16.3. Taking together, the data of present study suggest that both phytocompounds may be potential inhibitor of sHSP16.3 of MTB and a best alternative to standard anti-tuberculosis drugs.  相似文献   

8.
Heat shock proteins (HSP) are highly conserved across eukaryotic and prokaryotic species. These proteins play a role in response to cellular stressors, protecting cells from damage and facilitating recovery. In tumor cells, HSPs can have cytoprotective effects and interfere with apoptotic cascades. This study was performed to assess the prognostic and predictive values of the gene expression of HSP family members in canine osteosarcoma (OS) and their potential for targeted therapy. Gene expressions for HSP were assessed using quantitative PCR (qPCR) on 58 snap-frozen primary canine OS tumors and related to clinic-pathological parameters. A significant increased expression of HSP60 was found in relation to shorter overall survival and an osteoblastic phenotype. Therefore, the function of HSP60 was investigated in more detail. Immunohistochemical analysis revealed heterogeneous staining for HSP60 in tumors. The highest immunoreactivity was found in tumors of short surviving dogs. Next HSP expression was shown in a variety of canine and human OS cell lines by qPCR and Western blot. In two highly metastatic cell lines HSP60 expression was silenced using siRNA resulting in decreased cell proliferation and induction of apoptosis in both cell lines. It is concluded that overexpression of HSP60 is associated with a poor prognosis of OS and should be evaluated as a new target for therapy.  相似文献   

9.
Based on the lead compound L-80 (compound 2), a potent heat shock protein 90 (HSP90) inhibitor, a series of C-ring truncated deguelin analogs were designed, synthesized and evaluated for Hypoxia Inducible Factor-1α (HIF-1α) inhibition as a primary screening method. Their structure–activity relationship was investigated in a systematic manner by varying the A/B ring, linker and D/E ring, respectively. Among the synthesized inhibitors, compound 5 exhibited potent HIF-1α inhibition in a dose-dependent manner and significant antitumor activity in human non-small cell lung carcinoma (H1299), with better activities than L-80. It also inhibited in vitro hypoxia-mediated angiogenic processes in human retinal microvascular endothelial cells (HRMEC). The docking study of 5 showed a similar binding mode as L-80: it occupied the C-terminal ATP-binding pocket of HSP90, indicating that the anticancer and antiangiogenic activities of 5 were derived from HIF-1α destabilization by inhibiting the C-terminal ATP-binding site of hHSP90.  相似文献   

10.
ATP-independent small heat-shock proteins (sHSPs) are an essential component of the cellular chaperoning machinery. Under both normal and stress conditions, sHSPs bind partially unfolded proteins and prevent their irreversible aggregation. Canonical vertebrate sHSPs, such as the α-crystallins, form large polydisperse oligomers from which smaller, functionally active subspecies dissociate. Here we focus on human HSPB6 which, despite having considerable homology to the α-crystallins in both the N-terminal region and the signature α-crystallin domain (ACD), only forms dimers in solution that represent the basic chaperoning subspecies. We addressed the three-dimensional structure and functional properties of HSPB6 in a hybrid study employing X-ray crystallography, solution small-angle X-ray scattering (SAXS), mutagenesis, size-exclusion chromatography and chaperoning assays. The crystal structure of a proteolytically stable fragment reveals typical ACD dimers which further form tetrameric assemblies as a result of extensive inter-dimer patching of the β4/β8 grooves. The patching is surprisingly mediated by tripeptide motifs, found in the N-terminal domain directly adjacent to the ACD, that are resembling but distinct from the canonical IxI sequence commonly binding this groove. By combining the crystal structure with SAXS data for the full-length protein, we derive a molecular model of the latter. In solution, HSPB6 shows a strong attractive self-interaction, a property that correlates with its chaperoning activity. Both properties are dictated by the unstructured yet compact N-terminal domain, specifically a region highly conserved across vertebrate sHSPs.  相似文献   

11.
Due to their adjuvant effect and their ability to chaperone tumor-associated peptides, heat shock proteins constitute a potent alarm signal for the immune system and can lead to activation of anti-tumor T-cell immunity. Radiofrequency ablation has been reported to induce heat shock protein expression especially that of heat shock protein 70 in sublethally damaged tumor cells. In this study, we evaluated the release of heat shock protein 70 into the serum of cancer-bearing patients directly after radiofrequency ablation. Sera of 22 patients undergoing radiofrequency ablation for the treatment of primary and secondary malignancies of the liver, kidney, and lung, as well as control sera of 20 patients undergoing diagnostic liver biopsy were analyzed using a manufactured heat shock protein 70 ELISA. A significant increase in serum levels of heat shock protein 70 was detectable in the patient cohort 1 day after radiofrequency ablation. More than a twofold increase was observed in nine out of 22 patients, which tended to correlate with favorable clinical outcome. No patient of the control group revealed a comparable increase. Radiofrequency ablation can lead to a release of heat shock protein 70 into the serum, which is transiently detectable 1 day after treatment. Elevated heat shock protein 70 serum levels may constitute a biomarker for favorable clinical outcome.  相似文献   

12.
13.
AlphaB-crystallin homology, heat stress induction and chaperone activity suggested that a previously encloned gene product is a novel small heat shock protein (Hsp16.2). Suppression of Hsp16.2 by siRNA sensitized cells to hydrogen peroxide or taxol induced cell-death. Over-expressing of Hsp16.2 protected cells against stress stimuli by inhibiting cytochrome c release from the mitochondria, nuclear translocation of AIF and endonuclease G, and caspase 3 activation. Recombinant Hsp16.2 protected mitochondrial membrane potential against calcium induced collapse in vitro indicating that Hsp16.2 stabilizes mitochondrial membrane systems. Hsp16.2 formed self-aggregates and bound to Hsp90. Inhibition of Hsp90 by geldanamycin diminished the cytoprotective effect of Hsp16.2 indicating that this effect was Hsp90-mediated. Hsp16.2 over-expression increased lipid rafts formation as demonstrated by increased cell surface labeling with fluorescent cholera toxin B, and increased Akt phosphorylation. The inhibition of PI-3-kinase—Akt pathway by LY-294002 or wortmannin significantly decreased the protective effect of the Hsp16.2. These data indicate that the over-expression of Hsp16.2 inhibits cell death via the stabilization of mitochondrial membrane system, activation of Hsp90, stabilization of lipid rafts and by the activation of PI-3-kinase—Akt cytoprotective pathway.  相似文献   

14.
热休克蛋白30是小分子热休克蛋白(small heat shock proteins,sHSPs)中的一种,也是真菌中研究最广泛的小分子热休克蛋白。多种真菌编码热休克蛋白的基因序列已经被克隆和检测,HSP30的研究主要集中在应激水平下的表达和转录水平的调控,HSP30在应激反应中的合成机制仍不是很清楚,综述了它的研究概况以及应用前景。  相似文献   

15.
In this study, we kept BALB/c mice on a hyperlipidic diet for 120 days and then assessed the predisposition to apoptosis and the appearance of heat shock protein (Hsp) on splenic lymphocytes. By immunoblot analysis, bands corresponding to Hsp 60 and Hsp 70 in cells from mice kept on a saturated fatty acid diet showed a greater expression already after 1 month while two other bands, which correspond to Hsp 25 and Hsp 27, were slightly present after 1 month of treatment. In cells from mice kept on a diet rich in unsaturated fatty acid, there was a marked expression of Hsp 25 and Hsp 27 after only 30 days of treatment, which was maintained constant for up to 4 months; while for bands corresponding to Hsp 60 and Hsp 70, a significant minor signal was only detectable after 2-4 months from the beginning of the treatment. Splenic lymphocytes from animals kept on a lipidic diet containing saturated fatty acids were more susceptible to death by apoptosis, while cells of animals treated with unsaturated fatty acid were shown to be more resistant.  相似文献   

16.
Heat shock protein 90 (Hsp90) is an abundant protein and essential for all eukaryotic cells. The expression of Hsp90 is further enhanced after exposure to stress factors, e.g. a heat shock. Many proteins interacting with Hsp90 as well as the various functions for Hsp90 have been described. In this study, an Hsp90alpha fusion protein along with the enhanced green fluorescence protein (EGFP) was expressed under the control of the human cytomegalovirus immediate early promoter. EGFP-Hsp90alpha was mainly localized in the cytoplasm, with only minor amounts inside the nuclei. No EGFP-Hsp90alpha could be detected inside the nucleoli. Following exposure to elevated temperatures, higher amounts of EGFP-Hsp90alpha are inside the nucleus, but not within the nucleoli. As the most remarkable finding under these conditions, an association of EGFP-Hsp90alpha with the nuclear membrane became visible.  相似文献   

17.
Pigs from a population consisting of eight US breeds or strains and three Chinese breeds were examined by restriction fragment length polymorphism (RFLP) analysis of the heat shock protein HSP70 gene(s). Limited polymorphisms with PstI and PvuII restriction enzymes were observed, but there were no polymorphisms with BomIII and BglI.  相似文献   

18.
19.
It is now well established that induction of heat shock protein 72 (HSP72) protects the cell or tissue against a second otherwise lethal exposure to heat, a phenomenon known as thermotolerance. Because of this protective role, HSP72 is potentially useful in the treatment of heat illnesses, which range from relatively benign disorders such as heat cramps to heat stroke, which can be life threatening. This review discusses various ways in which HSP72 might be used in the diagnosis and treatment of the heat illnesses. This includes methods to induce HSP72, analysis of HSP72 in the cells and tissues of heat stroke patients, and screening methods to detect individuals who may be heat intolerant.  相似文献   

20.
Endogenous heat shock proteins (HSPs) 70 and 25/27 are induced in renal cells by injury from energy depletion. Transfected over-expression of HSPs 70 or 27 (human analogue of HSP25), provide protection against renal cell injury from ATP deprivation. This study examines whether over-expressed HSP27 depends on induction of endogenous HSPs, in particular HSP70, to afford protection against cell injury. LLC-PK1 cells transfected with HSP27 (27OE cells) were injured by ATP depletion for 2 h and recovered for 4 h in the presence of HSF decoy, HSP70 specific siRNA (siRNA-70) and their respective controls. Injury in the presence of HSF decoy, a synthetic oligonucleotide identical to the heat shock element, the nuclear binding site of HSF, decreased HSP70 induction by 80% without affecting the over-expression of transfected HSP27. The HSP70 stress response was completely ablated in the presence of siRNA-70. Protection against injury, provided by over-expression of HSP27, was reduced by treatment with HSF decoy and abolished by treatment with siRNA-70. Immunoprecipitation studies demonstrated association of HSP27 with actin that was not affected by either treatment with HSF decoy or siRNA. Therefore, HSP27 is dependent on HSP70 to provide its maximal cytoprotective effect, but not for its interaction with actin. This study suggests that, while it has specific action on the cytoskeleton, HSP 25/27 must have coordinated activity with other HSP classes, especially HSP70, to provide the full extent of resistance to injury from energy depletion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号