首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The hexameric structures of human heat shock protein 90   总被引:1,自引:0,他引:1  
Lee CC  Lin TW  Ko TP  Wang AH 《PloS one》2011,6(5):e19961

Background

The human 90-kDa heat shock protein (HSP90) functions as a dimeric molecular chaperone. HSP90 identified on the cell surface has been found to play a crucial role in cancer invasion and metastasis, and has become a validated anti-cancer target for drug development. It has been shown to self-assemble into oligomers upon heat shock or divalent cations treatment, but the functional role of the oligomeric states in the chaperone cycle is not fully understood.

Principal Findings

Here we report the crystal structure of a truncated HSP90 that contains the middle segment and the carboxy-terminal domain, termed MC-HSP90. The structure reveals an architecture with triangular bipyramid geometry, in which the building block of the hexameric assembly is a dimer. In solution, MC-HSP90 exists in three major oligomer states, namely dimer, tetramer and hexamer, which were elucidated by size exclusion chromatography and analytical ultracentrifugation. The newly discovered HSP90 isoform HSP90N that lacks the N-terminal ATPase domain also exhibited similar oligomerization states as did MC-HSP90.

Conclusions

While lacking the ATPase domain, both MC-HSP90 and HSP90N can self-assemble into a hexameric structure, spontaneously. The crystal structure of MC-HSP90 reveals that, in addition to the C-terminal dimerization domain, the residue W320 in the M domain plays a critical role in its oligomerization. This study not only demonstrates how the human MC-HSP90 forms a hexamer, but also justifies the similar formation of HSP90N by using 3D modeling analysis.  相似文献   

2.
Herpes simplex virus type 1 single-stranded DNA-binding protein (ICP8) has been crystallized on a positively charged lipid monolayer. The crystals belong to the planar group p2 with a=39 nm, b=23.2 nm and gamma=87.2 degrees. The projected map of ICP8 crystals calculated at a resolution of 3.9 nm shows four ICP8 monomers per unit cell with the crystals formed by a parallel arrangement of 16.2 nm helical ICP8 filaments. This novel filamentous form has not been reported before. The ICP8 monomers show different appearances in projection, suggesting that they may adopt different orientations, probably reflecting the strong intermolecular and lipid-filament interactions in the crystal. When the 23 nm diameter filaments formed by ICP8 in solution at low temperature in the presence of magnesium were generated and then layered on the phospholipid monolayer, highly ordered arrays of an 8.5 nm filament with a shallow 31.2 nm pitch were observed and reconstruction revealed a double-helical structure.  相似文献   

3.
The alpha isoform of human 90-kDa heat shock protein (HSP90alpha) is composed of three domains: the N-terminal (residues 1-400); middle (residues 401-615) and C-terminal (residues 621-732). The middle domain is simultaneously associated with the N- and C-terminal domains, and the interaction with the latter mediates the dimeric configuration of HSP90. Besides one in the N-terminal domain, an additional client-binding site exists in the C-terminal domain of HSP90. The aim of the present study is to elucidate the regions within the C-terminal domain responsible for the bindings to the middle domain and to a client protein, and to define the relationship between the two functions. A bacterial two-hybrid system revealed that residues 650-697 of HSP90alpha were essential for the binding to the middle domain. An almost identical region (residues 657-720) was required for the suppression of heat-induced aggregation of citrate synthase, a model client protein. Replacement of either Leu665-Leu666 or Leu671-Leu672 to Ser-Ser within the hydrophobic segment (residues 662-678) of the C-terminal domain caused the loss of bindings to both the middle domain and the client protein. The interaction between the middle and C-terminal domains was also found in human 94-kDa glucose-regulated protein. Moreover, Escherichia coli HtpG, a bacterial HSP90 homologue, formed heterodimeric complexes with HSP90alpha and the 94-kDa glucose-regulated protein through their middle-C-terminal domains. Taken together, it is concluded that the identical region including the hydrophobic segment of the C-terminal domain is essential for both the client binding and dimer formation of the HSP90-family molecular chaperone and that the dimeric configuration appears to be similar in the HSP90-family proteins.  相似文献   

4.
H Qin  Z Liu    S F Sui 《Biophysical journal》1995,68(6):2493-2496
Two-dimensional crystals of avidin were obtained on mixed lipid monolayers containing biotinylated lipids (N-biotinyl-dipalmitoyl-L-alpha-phosphatidyl ethanolamine and dioleoyl phosphatidyl choline) by specific interaction. Image analysis of electron micrographs of these crystals revealed p2 symmetry with the unit cell parameters a = 66 +/- 2 A, b = 68 +/- 1 A, and gamma = 121 +/- 4 degrees. The projection map showed, at a resolution of about 27 A, that the four subunits within one avidin molecule are separated into two parts. Comparison between avidin and streptavidin reveals that avidin molecule binds to the lipid monolayer in an orientation similar to that of streptavidin.  相似文献   

5.
Adhesion of calcium oxalate monohydrate (COM) crystals on renal tubular epithelial cells is a crucial step in kidney stone formation. Finding potential crystal receptors on the apical membrane of the cells may lead to a novel approach to prevent kidney stone disease. Our previous study identified a large number of crystal-binding proteins on the apical membrane of MDCK cells. However, their functional role as potential crystal receptors had not been validated. The present study aimed to address the potential role of heat shock protein 90 (HSP90) as a COM crystal receptor. The apical membrane was isolated from polarized MDCK cells by the peeling method and recovered proteins were incubated with COM crystals. Western blot analysis confirmed the presence of HSP90 in the apical membrane and the crystal-bound fraction. Immunofluorescence staining without permeabilization and laser-scanning confocal microscopy confirmed the surface HSP90 expression on the apical membrane of the intact cells. Crystal adhesion assay showed that blocking surface HSP90 by specific anti-HSP90 antibody and knockdown of HSP90 by small interfering RNA (siRNA) dramatically reduced crystal binding on the apical surface of MDCK cells (by approximately 1/2 and 2/3, respectively). Additionally, crystal internalization assay revealed the presence of HSP90 on the membrane of endocytic vesicle containing the internalized COM crystal. Moreover, pretreatment of MDCK cells with anti-HSP90 antibody significantly reduced crystal internalization (by approximately 1/3). Taken together, our data indicate that HSP90 serves as a potential receptor for COM crystals on the apical membrane of renal tubular epithelial cells and is involved in endocytosis/internalization of the crystals into the cells.  相似文献   

6.
Mycobacterium tuberculosis (Mtb) is capable of surviving in dormancy before developing to tuberculosis (TB). One of the major challenges of TB management is the identification of patients, making TB diagnosis critical for disease management. This study focuses on the 16 kDa heat shock protein (HSP16.3; a potential biomarker for latent TB infection) that is expressed during the latent phase of Mtb growth. In order to explore the dynamics and interactions of HSP16.3, the 3-D structure of HSP16.3 was built via comparative modelling. The predicted structure shows a predominantly beta-sheet dodecamer with alpha-helical folds at its N-terminal. A known protein-hydrophobic probe (1,1′-Bi(4-anilino)naphthalene-5,5′-disulfonic acid; bisANS) was docked to the HSP16.3 model. Interacting residues predicted from docking and MD simulations are in good accordance with experimental data reported in the literature. MMPBSA calculation from MD simulation also showed favourable binding free energy of ?29.90 kcal/mol, driven mainly by van der waals and non-polar solvation energies. The statistical evaluation and results from the computational study on HSP16.3 indicate the reliability of the built model, which is potentially useful for further structural studies of HSP16.3 for latent TB diagnostics.  相似文献   

7.
There is substantial evidence which implicates alpha-synuclein and its ability to aggregate and bind vesicle membranes as critical factors in the development of Parkinson's disease. In order to investigate the interaction between alpha-synuclein wild type (Wt) and its familial mutants, A53T and A30P with lipid membranes, we developed a novel lipid binding assay using surface enhanced laser desorption/ionisation-time of flight-mass spectrometry (SELDI-TOF MS). Wt and A53T exhibited similar lipid binding profiles; monomeric species and dimers bound with high relative affinity to the lipid surface, the latter of which exhibited preferential binding. Wt and A53T trimers and tetramers were also detected on the lipid surface. A30P exhibited a unique lipid binding profile; monomeric A30P bound with a low relative affinity, however, the dimeric species of A30P exhibited a higher binding ability. Larger order A30P oligomers were not detected on the lipid surface. Tapping mode atomic force microscopy (AFM) imaging was conducted to further examine the alpha-synuclein-lipid interaction. AFM analysis revealed Wt and its familial mutants can penetrate lipid membranes or disrupt the lipid and bind the hydrophobic alkyl self-assembled monolayer (SAM) used to form the lipid layer. The profile of these studied proteins revealed the presence of 'small features' consistent with the presence of monomeric and dimeric forms of the protein. These data collectively indicate that the dimeric species of Wt and its mutants can bind and cause membrane perturbations.  相似文献   

8.
There is substantial evidence which implicates α-synuclein and its ability to aggregate and bind vesicle membranes as critical factors in the development of Parkinson's disease. In order to investigate the interaction between α-synuclein wild type (Wt) and its familial mutants, A53T and A30P with lipid membranes, we developed a novel lipid binding assay using surface enhanced laser desorption/ionisation-time of flight-mass spectrometry (SELDI-TOF MS). Wt and A53T exhibited similar lipid binding profiles; monomeric species and dimers bound with high relative affinity to the lipid surface, the latter of which exhibited preferential binding. Wt and A53T trimers and tetramers were also detected on the lipid surface. A30P exhibited a unique lipid binding profile; monomeric A30P bound with a low relative affinity, however, the dimeric species of A30P exhibited a higher binding ability. Larger order A30P oligomers were not detected on the lipid surface. Tapping mode atomic force microscopy (AFM) imaging was conducted to further examine the α-synuclein-lipid interaction. AFM analysis revealed Wt and its familial mutants can penetrate lipid membranes or disrupt the lipid and bind the hydrophobic alkyl self-assembled monolayer (SAM) used to form the lipid layer. The profile of these studied proteins revealed the presence of ‘small features’ consistent with the presence of monomeric and dimeric forms of the protein. These data collectively indicate that the dimeric species of Wt and its mutants can bind and cause membrane perturbations.  相似文献   

9.
Site-directed spin labeling was used to investigate quaternary interactions along a conserved sequence in the alpha-crystallin domain of alphaA-crystallin, heat-shock protein 27 (HSP 27), and Mycobacterium tuberculosis heat-shock protein (HSP 16.3). In previous work, it was demonstrated that this sequence in alphaA-crystallin and HSP 27 forms a beta-strand involved in subunit contacts. In this study, the symmetry and geometry of the resulting interface were investigated. For this purpose, the pattern of spin-spin interactions was analyzed, and the number of interacting spins was determined in alphaA-crystallin and HSP 27. The results reveal a 2-fold symmetric interface consisting of two beta-strands interacting near their N termini in an antiparallel fashion. Remarkably, subunit interactions along this interface persist when the alpha-crystallin domains are expressed in isolation. Because this domain in alphaA-crystallin forms dimers and tetramers, it is inferred that interactions along this interface mediate the formation of a basic dimeric unit. In contrast, in HSP 16.3, spin-spin interactions are observed at only one site near the C terminus of the sequence. Furthermore, cysteine substitutions at residues flanking the N terminus resulted in the dissociation of the oligomeric structure. Analysis of the spin-spin interactions and size exclusion chromatography indicates a 3-fold symmetric interface. Taken together, our results demonstrate that subunit interactions in the alpha-crystallin domain of mammalian small heat-shock proteins assemble a basic building block of the oligomeric structure. Sequence divergence in this domain results in variations in the size and symmetry of the quaternary structure between distant members of the small heat-shock protein family.  相似文献   

10.
The untransformed rat glucocorticoid receptor is assumed to be a hetero-oligomeric complex, containing a non-steroid binding component, the 90K heat-shock protein (HSP 90). Direct measurement of its molecular weight by chemical cross-linking provides new evidence for a trimeric structure with a Mr of ca. 270,000. Resorting to an anti HSP 90 probe (AC 88), we show that the native dimeric HSP 90 possess two accessible epitopes for this monoclonal antibody, while when bound to the steroid-binding subunit, only one epitope remains accessible. These data clearly suggest that the untransformed rat glucocorticoid receptor is an asymmetrical hetero-oligomeric complex.  相似文献   

11.
Sodium proton antiporters are ubiquitous membrane proteins. Their importance for cell viability is the result of their role in homeostasis of intracellular pH, cellular Na+ content and cell volume. Recently, the first structure of this family of secondary transporters, namely of NhaA from Escherichia coli, revealed a novel fold and elucidated the molecular basis for the mechanism of transport and its regulation by pH. Here, we describe the key steps for the structure determination of NhaA, an iterative process of improving protein quality as well as crystallization conditions. Protein quality was optimized by shortening the purification to a single step and by changing the expression host. The major steps for crystal improvement were the exchange of the detergent during protein purification from the beta- to the alpha-anomer of DDM, the addition of OG to the crystallization set ups, and the growth of the crystals under conditions suitable for cryo-temperatures. Unexpectedly, the dimeric association of the transporter in the 3D crystal lattice is non-physiological. A comparison of the X-ray structure with the electron density map from cryo-electron microscopy of 2D crystals demonstrates that the NhaA helix packing in the 3D crystal is identical with the one in the lipid environment. Thus, the antiporter is in a native conformation in the 3D crystals.  相似文献   

12.
The majority of mouse HSP90 exists as alpha-alpha and beta-beta homodimers. Truncation of the 15-kDa carboxy-terminal region of mouse HSP90 by digestion with the Ca(2+)-dependent protease m-calpain caused dissociation of the dimer. When expressed in a reticulocyte lysate, the full-length human HSP90 alpha formed a dimeric form. A plasmid harboring human HSP90 alpha cDNA was constructed so that the carboxy-terminal 49 amino acid residues were removed when translated in vitro. This carboxy-terminally truncated human HSP90 alpha was found to exist as a monomer. In contrast, loss of the 118 amino acid residues from the amino terminus of human HSP90 alpha did not affect its in vitro dimerization. Introduction of an expression plasmid harboring the full-length human HSP90 alpha complements the lethality caused by the double mutations of two HSP90-related genes, hsp82 and hsc82, in a haploid strain of Saccharomyces cerevisiae. The carboxy-terminally truncated human HSP90 alpha neither formed dimers in yeast cells nor rescued the lethal double mutant.  相似文献   

13.
Reverse gyrase is a type IA topoisomerase, found in various hyperthermophiles and promotes ATP-dependent positive supercoiling of DNA. Electron microscopy combined with single particle analyses revealed the three-dimensional structure of the DNA-free Sulfolobus tokodaii reverse gyrase and two-dimensional average images of both the protein alone and that complexed with double-stranded DNA. The 23A resolution map exhibited a parallelogrammatic morphology of 110 x 87 x 43A, which is in good agreement with the crystal structure of the Archaeoglobus fulgidus reverse gyrase. The average image of the complex revealed that the monomeric enzyme binds DNA duplex. Together with this average image of the complex, the three-dimensional map implies that, at the beginning of the supercoiling reaction, DNA is bound within a 10-20A wide cleft in the helicase-like domain. We also speculate that DNA may pass through a 20A wide hole at the end of the cleft.  相似文献   

14.
The 90-kDa heat shock protein, HSP90, of the mouse has two isoforms, alpha and beta, which are electrophoretically separable. We have investigated the native forms of HSP90 molecules under physiological conditions and determined their isoform compositions. Analysis by sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed that HSP90 purified from mouse lymphoma L5178Y cells consists of approximately 40% alpha and 60% beta isoforms. Analysis by nondenaturing polyacrylamide gel electrophoresis showed that the purified HSP90 exists predominantly as a dimer, but a considerable amount of monomer was also detected. Western blotting using polyclonal anti-mouse HSP90 antibodies revealed that the native forms of HSP90 in the crude L5178Y cell lysates are also dimer and monomer. The nondenaturing polyacrylamide gel electrophoresis resolved the dimeric forms into two separate bands that were identified as alpha/alpha and beta/beta homodimers by two methods: sodium dodecyl sulfate-polyacrylamide gel electrophoresis and peptide mapping. In addition, the results showed that the monomeric form consists mainly of the beta isoform. Both the alpha and beta isoforms were shown to bind equally to actin filaments.  相似文献   

15.
The Serratia endonuclease is an extracellularly secreted enzyme capable of cleaving both single- and double-stranded forms of DNA and RNA. It is the first member of a large class of related and usually dimeric endonucleases for which a structure is known. Using X-ray crystallography, the structure of monomer of this enzyme was reported by us previously (Miller MD et al., 1994, Nature Struct Biol 1:461-468). We now confirm the dimeric nature of this enzyme through light-scattering experiments and identify the physiologic dimer interface through crystal packing analysis. This dimerization occurs through an isologous twofold interaction localized to the carboxy-terminal subdomain of the enzyme. The dimer is a prolate ellipsoid with dimensions 30 A x 35 A x 90 A. The dimer interface is flat and contains four salt links, several hydrogen bonds, and nonpolar interactions. Buried water is prominent in this interface and it includes an unusual "cubic" water cluster. The position of the two active sites in the dimer suggests that they can act independently in their cleavage of DNA, but have a geometrical advantage in attacking substrate relative to the monomer.  相似文献   

16.
Low dose electron diffraction and imaging techniques have been applied to the study of the crystalline structure of gp32*I, a DNA helix destabilizing protein derived from bacteriophage T4 gene 32 protein. A quantitative analysis of intensities from electron diffraction patterns from tilted, multilayered gp32*I crystal has provided the unit cell thickness of the crystal. The three-dimensional phases indicate that the space group P2(1)2(1)2. By taking into account the unit cell volume and the solvent content in the crystal, it was deduced that there is one gp32*I molecule in each asymmetric unit. A projected density map of unstained, glucose-embedded gp32*I crystal was synthesized with amplitudes from electron diffraction intensities and phases from electron images with reflections out to 7.6 A. Because of the similarity in the scattering density between glucose and protein, this projected map cannot be interpreted with certainty. A low resolution three-dimensional reconstruction shows that the protein molecule is about 90 A long and about 20 A in diameter. Because the dimer is formed around a dyad axis, the protein molecules comprising it must be arranged head-to-head. This dimeric arrangement of the proteins in the unit cell may be implicated as one of the conformational states of this protein in solution.  相似文献   

17.
The structure of FhuA, a siderophore and phage receptor in the outer membrane of Escherichia coli, has been investigated by electron crystallography. Bidimensional crystals of hexahistidine-tagged FhuA protein solubilized in N,N-dimethyldodecylamine-N-oxide were produced after detergent removal with polystyrene beads. Frozen-hydrated crystals (unit cell dimensions of a = 124 A, b = 98 A, gamma = 90 degrees ) exhibited a p22121 plane group symmetry. A projection map at 8 A resolution showed the presence of dimeric ring-like structures with an elliptical shape (48 x 40 A). Each monomer was composed of a ring of densities with a radial width of 8-10 A corresponding to a cylinder of beta sheets. Few densities are present inside the barrel, leaving a central channel approximately 25 A in diameter. A projection map of FhuA at 15 A resolution, which was calculated from negatively stained preparations, demonstrated that most of the central channel was masked by extramembrane domains. This map also revealed an asymmetric distribution of extramembrane domains in FhuA, with large domains located mainly on one side of the molecule. Comparison with density maps derived from recent atomic structure allowed further interpretation of the electron microscopy projection structures with regard to long hydrophilic loops governing the selectivity and opening of the channel.  相似文献   

18.
The structure of P-glycoprotein (Pgp) from mouse has been studied by electron microscopy and image analysis. Two-dimensional crystals of Pgp in a lipid bilayer were generated by reconstituting pure, detergent-solubilized protein containing a C-terminal six-histidine tag using the lipid monolayer technique. The crystals belong to plane group P1 with a = b = 104 +/- 2 A and gamma = 90 +/- 4 degrees. The projection structure of Pgp calculated at a resolution of 22 A shows two closely interacting protein domains that can be interpreted as the N- and C-terminal halves of the protein. The projection structure of Pgp is consistent with the recently published x-ray structure of MsbA, a lipid A flippase from Escherichia coli with high sequence homology to Pgp but only when the two MsbA subunits are rotated to bring their nucleotide binding domains together.  相似文献   

19.
Huang SY  Kuo YH  Lee WC  Tsou HL  Lee YP  Chang HL  Wu JJ  Yang PC 《Theriogenology》1999,51(5):1007-1016
The decline in boar semen quality after cryopreservation may be attributed to changes in intracellular proteins. Thus, the aim of the present study was to evaluate the change of protein profiles in boar spermatozoa during the process of cooling and after cryopreservation. A total of 9 sexually mature boars (mean age = 25.5+/-12.3 mo) was used. Samples for protein analysis were collected before chilling, after cooling to 15 degrees C, after cooling to 5 degrees C, following thawing after freezing to -100 degrees C, and following thawing after 1 wk of cryopreservation at -196 degrees C. Semen characteristics evaluated included progressive motility and the percentage of morphologically normal spermatozoa. Total proteins from 5x10(6) spermatozoa were separated and analyzed by SDS-PAGE. The results revealed that there was a substantial decrease of a 90 kDa protein in the frozen-thawed spermatozoa. Western blot analysis demonstrated that this protein was 90 kDa heat-shock protein (HSP90). Time course study showed that the decrease of HSP90 in spermatozoa initially occurred in the first hour during cooling to 5 degrees C. When compared with the fresh spermatozoa before chilling, there was a 64% decrease of HSP90 in spermatozoa after cooling to 5 degrees C. However, the motility and percentage of normal spermatozoa did not significantly decrease during this period of treatment. Both declined substantially as the semen was thawed after freezing from -100 degrees C. The results indicated that the decrease of HSP90 precedes the decline of semen characteristics. The length of time between a decrease of HSP90 and the decline in sperm motility was estimated to be 2 to 3 h. Taken together, the above results suggested that a substantial decrease of HSP90 might be associated with a decline in sperm motility during cooling of boar spermatozoa.  相似文献   

20.
Obtaining crystals of membrane proteins that diffract to high resolution remains a major stumbling block in structure determination. Here we present a new method for crystallizing membrane proteins from a bicelle forming lipid/detergent mixture. The method is flexible and simple to use. As a test case, bacteriorhodopsin (bR) from Halobacterium salinarum was crystallized from a bicellar solution, yielding a new bR crystal form. The crystals belong to space group P2(1) with unit cell dimensions of a=45.0 A, b=108.9 A, c=55.9 A, beta=113.58 degrees and a dimeric asymmetric unit. The structure was solved by molecular replacement and refined at 2.0 A resolution. In all previous bR structures the protein is organized as a parallel trimer, but in the crystals grown from bicelles, the individual bR subunits are arranged in an antiparallel fashion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号