首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Sphingolipids have been found to have single methyl branchings both in their long-chain base and in their N-linked acyl chains. In this study we determined how methyl-branching in the N-linked acyl chain of sphingomyelin (SM) affected their membrane properties. SM analogs with a single methyl-branching at carbon 15 (of a 17:0 acyl chain; anteiso) had a lower gel-liquid transition temperature as compared to an iso-branched SM analog. Phytanoyl SM (methyls at carbons 3, 7, 11 and 15) as well as a SM analog with a methyl on carbon 10 in a hexadecanoyl chain failed to show a gel-liquid transition above 10 °C. Only the two distally branched SM analogs (iso and anteiso) formed ordered domains with cholesterol in a 1-palmitoyl-2-oleoyl-phosphatidylcholine (POPC) bilayer. However, domains formed by the branched SM analogs appeared to contain less sterol when compared to palmitoyl SM (PSM) as the saturated phospholipid. Sterol-enriched domains formed by the anteiso SM analog were also less stable against temperature than domains formed by PSM. Both the 10-methyl and phytanoyl SM analogs failed to form sterol-enriched domains in the POPC bilayer. Acyl chain branching weakened SM/sterol interactions markedly when compared to PSM, as also evidenced from the decreased affinity of cholestatrienol to bilayers containing branched SM analogs. Our results show that methyl-branching weakened intermolecular interactions in a position-dependent manner.  相似文献   

2.
We use fluorescence microscopy to directly observe liquid phases in giant unilamellar vesicles. We find that a long list of ternary mixtures of high melting temperature (saturated) lipids, low melting temperature (usually unsaturated) lipids, and cholesterol produce liquid domains. For one model mixture in particular, DPPC/DOPC/Chol, we have mapped phase boundaries for the full ternary system. For this mixture we observe two coexisting liquid phases over a wide range of lipid composition and temperature, with one phase rich in the unsaturated lipid and the other rich in the saturated lipid and cholesterol. We find a simple relationship between chain melting temperature and miscibility transition temperature that holds for both phosphatidylcholine and sphingomyelin lipids. We experimentally cross miscibility boundaries both by changing temperature and by the depletion of cholesterol with beta-cyclodextrin. Liquid domains in vesicles exhibit interesting behavior: they collide and coalesce, can finger into stripes, and can bulge out of the vesicle. To date, we have not observed macroscopic separation of liquid phases in only binary lipid mixtures.  相似文献   

3.
We have studied the properties of mixtures of cholesterol with dioleoylphosphatidylcholine (DOPC), and with several other phospholipids, including 1-stearoyl-2-oleoylphosphatidylcholine (SOPC) and dioleoleoylphosphatidylserine (DOPS), as a function of cholesterol molar fraction and of temperature. Mixtures of DOPC with a cholesterol molar fraction of 0.4 or greater display polymorphic behavior. This polymorphism includes the formation of structures that give rise to isotropic peaks in 31P NMR at cholesterol molar fractions between 0.4 and 0.6, dependent on the thermal history of the sample. Cryo-electron microscopy studies demonstrate the formation of small globular aggregates that would contribute to a narrowing of the 31P NMR powder pattern.At molar fraction cholesterol 0.6 and higher and at temperatures above 70 °C, the mixtures with DOPC convert to the hexagonal phase. Lipid polymorphism is accompanied by the phase separation of cholesterol crystals in the anhydrous form and/or the monohydrate form. The crystals that are formed have substantially altered kinetics of hydration and dehydration, compared with both pure cholesterol monohydrate crystals and with crystals formed in the presence of the other phospholipids that do not form the hexagonal phase in the presence of cholesterol. This fact demonstrates that these cholesterol crystals are in intimate contact with the DOPC phospholipid and are not present as morphologically separate structures.  相似文献   

4.
Epand RM 《Biophysical journal》2003,84(5):3102-3110
Membranes of the lens of the eye of mammals have two particular characteristics, high concentrations of sphingomyelin, and dihydrosphingomyelin and cholesterol. We have studied the miscibility of cholesterol with both egg sphingomyelin and with dihydrosphingomyelin made by hydrogenation of egg sphingomyelin. At a cholesterol mol fraction of 0.5 and lower, crystallites of cholesterol are not present with either form of sphingomyelin, as observed by differential scanning calorimetry and by (13)C CP/MAS NMR. However, in the range of 0.6 to 0.8 mol fraction of cholesterol increasing amounts of crystallites form, with the amount of anhydrous cholesterol crystals formed being somewhat greater with dihyrosphingomyelin compared with sphingomyelin. Interestingly, cholesterol monohydrate crystallites formed in these two phospholipids exhibit a temperature of dehydration higher than that of pure cholesterol monohydrate crystals. These cholesterol monohydrate crystals form more rapidly and in greater amounts with the unmodified form of sphingomyelin. This difference is likely a consequence of differences at the membrane interface. The chemical shift of the (13)C of the carbonyl group, as measured by CP/MAS NMR, shows that there are differences between the two phospholipids in both the presence and absence of cholesterol. The bilayers with dihydrosphingomyelin are more hydrogen bonded. Cholesterol crystallites are known to be present in the lens of the eye. Our studies show that the ratio of sphingomyelin to dihydrosphingomyelin can affect the rate of formation of these cholesterol crystallites and thus play a role in the membrane of cells of the lens, affecting ocular function.  相似文献   

5.
Membrane microdomains, such as caveolae and rafts, are enriched in cholesterol and sphingomyelin, display liquid-ordered phase properties, and putatively function as protein organizing platforms. The goal of this investigation was to identify sterol and sphingomyelin structural features that modulate surface compression and solubilization by detergent because liquid-ordered phase displays low lateral elasticity and resists solubilization by Triton X-100. Compared to cholesterol, sterol structural changes involved either altering the polar headgroup (e.g., 6-ketocholestanol) or eliminating the isooctyl hydrocarbon tail (e.g., 5-androsten-3beta-ol). Synthetic changes to sphingomyelin resulted in homogeneous acyl chains of differing length but of biological relevance. Using a Langmuir surface balance, surface compressional moduli were assessed at various surface pressures including those (pi > or =30 mN/m) that mimic biomembrane conditions. Sphingomyelin-sterol mixtures generally were less elastic in a lateral sense than chain-matched phosphatidylcholine-sterol mixtures at equivalent high sterol mole fractions. Increasing content of 6-ketocholestanol or 5-androsten-3beta-ol in sphingomyelin decreased lateral elasticity but much less effectively than cholesterol. Our results indicate that cholesterol is ideally structured for maximally reducing the lateral elasticity of membrane sphingolipids, for enabling resistance to Triton X-100 solubilization, and for interacting with sphingomyelins that contain saturated acyl chains similar in length to their sphingoid bases.  相似文献   

6.
The ability of membrane components to arrange themselves heterogeneously within the bilayer induces the formation of microdomains. Much work has been devoted to mimicking domain-assembly in artificial bilayers and characterizing their physico-chemical properties. Ternary lipid mixtures composed of unsaturated phospholipids, sphingomyelin and cholesterol give rise to large, round domains. Here, we replaced the unsaturated phospholipid in the ternary mixture with sphingomyelin and cholesterol by saturated glycero-phospholipids of different chain length and characterized the critical role of cholesterol in sorting these lipids by confocal imaging and fluorescence correlation spectroscopy (FCS). More cholesterol is needed to obtain phase segregation in ternary mixtures, in which the unsaturated phospholipid is replaced by a saturated one. Finally, lipid dynamics in distinct phases is very low and astonishingly similar, thereby suggesting the poor ability of cholesterol in sorting short-chain saturated glycero-phospholipids and sphingomyelin.  相似文献   

7.
Elaidic acid is a trans-fatty acid found in many food products and implicated for having potentially health hazardous effects in humans. Elaidic acid is readily incorporated into membrane lipids in vivo and therefore affects processes regulating membrane physical properties. In this study the membrane properties of sphingomyelin and phosphatidylcholine containing elaidic acid (N-E-SM and PEPC) were determined in bilayer membranes with special emphasis on their interaction with cholesterol and participation in ordered domain formation. In agreement with previous studies the melting temperatures were found to be about 20 °C lower for the elaidoyl than for the corresponding saturated lipids. The trans-unsaturation increased the polarity at the membrane-water interface as reported by Laurdan fluorescence. Fluorescence quenching experiments using cholestatrienol as a probe showed that both N-E-SM and PEPC were incorporated in lateral membrane domains with sterol and saturated lipids. At low temperatures the elaidoyl lipids were even able to form sterol-rich domains without any saturated lipids present in the bilayer. We conclude from this study that the ability of N-E-SM and PEPC to form ordered domains together with cholesterol and saturated phospho- and sphingolipids in model membranes indicates that they might have an influence on raft formation in biological membranes.  相似文献   

8.
We have studied the properties of mixtures of cholesterol with dioleoylphosphatidylcholine (DOPC), and with several other phospholipids, including 1-stearoyl-2-oleoylphosphatidylcholine (SOPC) and dioleoleoylphosphatidylserine (DOPS), as a function of cholesterol molar fraction and of temperature. Mixtures of DOPC with a cholesterol molar fraction of 0.4 or greater display polymorphic behavior. This polymorphism includes the formation of structures that give rise to isotropic peaks in 31P NMR at cholesterol molar fractions between 0.4 and 0.6, dependent on the thermal history of the sample. Cryo-electron microscopy studies demonstrate the formation of small globular aggregates that would contribute to a narrowing of the 31P NMR powder pattern.At molar fraction cholesterol 0.6 and higher and at temperatures above 70 degrees C, the mixtures with DOPC convert to the hexagonal phase. Lipid polymorphism is accompanied by the phase separation of cholesterol crystals in the anhydrous form and/or the monohydrate form. The crystals that are formed have substantially altered kinetics of hydration and dehydration, compared with both pure cholesterol monohydrate crystals and with crystals formed in the presence of the other phospholipids that do not form the hexagonal phase in the presence of cholesterol. This fact demonstrates that these cholesterol crystals are in intimate contact with the DOPC phospholipid and are not present as morphologically separate structures.  相似文献   

9.
In this study, we used cholestatrienol (CTL) as a fluorescent reporter molecule to study sterol-rich L(o) domains in complex lipid bilayers. CTL is a fluorescent cholesterol analog that mimics the behavior of cholesterol well. The ability of 12SLPC to quench the fluorescence of cholestatrienol gives a measure of the amount of sterol included in L(o) domains in mixed lipid membranes. The stability of sterol-rich domains formed in complex lipid mixtures containing saturated sphingomyelins, phosphatidylcholines, or galactosylceramide as potential domain-forming lipids were studied. The amount of sterol associated with sterol-rich domains seemed to always increase with increasing temperature. The quenching efficiency was highly dependent on the domain-forming lipid present in complex lipid mixtures. Sphingomyelins formed stable sterol-enriched domains and were able to shield CTL from quenching better than the other lipids included in this study. The saturated phosphatidylcholines also formed sterol-rich domains, but the quenching efficiency in membranes with these was higher than with sphingomyelins and the domains melted at lower temperatures. PGalCer was not able to form sterol-enriched domains. However, we found that PGalCer stabilized sterol-rich domains formed in PSM-containing bilayers. Using a fluorescent ceramide analog, we also demonstrated that N-palmitoyl-ceramide displaced the sterol from sphingolipid-rich domains in mixed bilayer membranes.  相似文献   

10.
We use (2)H-NMR, (1)H-MAS NMR, and fluorescence microscopy to detect immiscibility in three particular phospholipid ratios mixed with 30% cholesterol: 2:1 DOPC/DPPC, 1:1 DOPC/DPPC, and 1:2 DOPC/DPPC. Large-scale (>160 nm) phase separation into liquid-ordered (L(o)) and liquid-crystalline (L(alpha)) phases is observed by both NMR and fluorescence microscopy. By fitting superimposed (2)H-NMR spectra, we quantitatively determine that the L(o) phase is strongly enriched in DPPC and moderately enriched in cholesterol. Tie-lines estimated at different temperatures and membrane compositions are based on both (2)H-NMR observations and a previously published ternary phase diagram. (2)H- and (1)H-MAS NMR techniques probe significantly smaller length scales than microscopy experiments (submicron versus micron-scalp), and complex behavior is observed near the miscibility transition. Fluorescence microscopy of giant unilamellar vesicles shows micrometer-scale domains below the miscibility transition. In contrast, NMR of multilamellar vesicles gives evidence for smaller ( approximately 80 nm) domains just below the miscibility transition, whereas large-scale demixing occurs at a lower temperature, T(low). A transition at T(low) is also evident in fluorescence microscopy measurements of the surface area fraction of ordered phase in giant unilamellar vesicles. Our results reemphasize the complex phase behavior of cholesterol-containing membranes and provide a framework for interpreting (2)H-NMR experiments in similar membranes.  相似文献   

11.
Free-standing giant unilamellar vesicles were used to visualize the complex lateral heterogeneity, induced by ceramide in the membrane bilayer at micron scale using C12-NBD-PC probe partitioning under the fluorescence microscope. Ceramide gel domains exist as leaf-like structures in glycerophospholipid/ceramide mixtures. Cholesterol readily increases ceramide miscibility with glycerophospholipids but cholesterol-ceramide interactions are not involved in the organization of the liquid-ordered phase as exemplified by sphingomyelin/cholesterol mixtures. Sphingomyelin stabilizes the gel phase and thus decreases ceramide miscibility in the presence of cholesterol. Gel/liquid-ordered/liquid-disordered phase coexistence was visualized in quaternary phosphatidylcholine/sphingomyelin/ceramide/cholesterol mixtures as occurrence of dark leaf-like and circular domains within a bright liquid phase. Sphingomyelin initiates specific ceramide-sphingomyelin interactions to form a highly ordered gel phase appearing at temperatures higher than pure ceramide gel phase in phosphatidylcholine/ceramide mixtures. Less sphingomyelin is engaged in formation of liquid-ordered phase leading to a shift in its formation to lower temperatures. Sphingomyelinase activity on substrate vesicles destroys micron Lo domains but induces the formation of a gel-like phase. The activation of phospholipase A2 by ceramide on heterogeneous membranes was visualized. Changes in the phase state of the membrane bilayer initiates such morphological processes as membrane fragmentation, budding in and budding out was demonstrated.  相似文献   

12.
A fluorescence-quenching method has been used to assess the potential formation of segregated liquid-ordered domains in lipid bilayers combining cholesterol with mixtures of amino and choline phospholipids like those found in the cytoplasmic leaflet of the mammalian cell plasma membrane. When present in proportions >20-30 mol %, different saturated phospholipids show a strong proclivity to form segregated domains when combined with unsaturated phospholipids and cholesterol, in a manner that is only weakly affected by the nature of the phospholipid headgroups. By contrast, mixtures containing purely unsaturated phospholipids and cholesterol do not exhibit detectable segregation of domains, even in systems whose components differ in headgroup structure, mono- versus polyunsaturation and/or acyl chain heterogeneity. These results indicate that mixtures of phospholipids resembling those found in the inner leaflet of the plasma membrane do not spontaneously form segregated liquid-ordered domains. Instead, our findings suggest that factors extrinsic to the inner-monolayer lipids themselves (e.g., transbilayer penetration of long sphingolipid acyl chains) would be essential to confer a distinctive, more highly ordered organization to the cytoplasmic leaflet of "lipid raft" structures in animal cell membranes.  相似文献   

13.
The mutual interactions between lipids in bilayers are reviewed, including mixtures of phospholipids, and mixtures of phospholipids and cholesterol (Chol). Binary mixtures and ternary mixtures are considered, with special emphasis on membranes containing Chol, an ordered phospholipid, and a disordered phospholipid. Typically the ordered phospholipid is a sphingomyelin (SM) or a long-chain saturated phosphatidylcholine (PC), both of which have high phase transitions temperatures; the disordered phospholipid is 1-palmitoyl-2-oleoylphosphatidylcholine (POPC) or dioleoylphosphatidylcholine (DOPC). The unlike nearest-neighbor interaction free energies (ωAB) between lipids (including Chol), obtained by an variety of unrelated methods, are typically in the range of 0-400 cal/mol in absolute value. Most are positive, meaning that the interaction is unfavorable, but some are negative, meaning it is favorable. It is of special interest that favorable interactions occur mainly between ordered phospholipids and Chol. The interpretation of domain formation in complex mixtures of Chol and phospholipids in terms of phase separation or condensed complexes is discussed in the light of the values of lipid mutual interactions.  相似文献   

14.
In the present work, we demonstrate that phosphatidylcholine with (16:1)9 acyl chains undergoes polymorphic rearrangements in mixtures with 0.6-0.8 mol fraction cholesterol. Studies were performed using differential scanning calorimetry, X-ray diffraction, cryo-electron microscopy, 31P NMR static powder patterns and 13C MAS/NMR. Mixtures of phosphatidylcholine with (16:1)9 acyl chains and 0.6 mol fraction cholesterol, after being heated to 100 degrees C, can form an ordered array with periodicity 14 nm which may be indicative of a cubic phase. Our results indicate that the formation of highly curved bilayer structures, such as those required for membrane fusion, can occur in mixtures of cholesterol with certain phosphatidylcholines that do not form non-lamellar structures in the absence of cholesterol. We also determine the polymorphic behavior of mixtures of symmetric phosphatidylcholines with cholesterol. Species of phosphatidylcholine with (20:1)11, (22:1)13 or (24:1)15 acyl chains in mixtures with 0.6-0.8 mol fraction cholesterol undergo a transition to the hexagonal phase at temperatures 70-80 degrees C. This is not the case for phosphatidylcholine with (18:1)6 acyl chains which remains in the lamellar phase up to 100 degrees C when mixed with as much as 0.8 mol fraction cholesterol. Thus, the polymorphic behavior of mixtures of phosphatidylcholine and cholesterol is not uncommon and is dependent on the intrinsic curvature of the phospholipid. Crystals of cholesterol can be detected in mixtures of all of these phosphatidylcholines at sufficiently high cholesterol mole fraction. What is unusual about the formation of these crystals in several cases is that cholesterol crystals are present in the monohydrate form in preference to the anhydrous form. Furthermore, after heating to 100 degrees C and recooling, the cholesterol crystals are again observed to be in the monohydrate form, although pure cholesterol crystals require many hours to rehydrate after being heated to 100 degrees C. Both the nature of the acyl chain as well as the mole fraction cholesterol determine whether cholesterol crystals in mixtures with the phospholipids will be in the monohydrate or in the anhydrous form.  相似文献   

15.
Sphingolipids containing very long acyl chains are abundant in certain specialized tissues and minor components of plasma membranes in most mammalian cells. There are cellular processes in which these sphingolipids are required, and the function seems to be mediated through sphingolipid-rich membrane domains. This study was conducted to explore how very long acyl chains of sphingolipids influence their lateral distribution in membranes. Differential scanning calorimetry showed that 24:0- and 24:1-sphingomyelins, galactosylceramides and glucosylceramides exhibited complex thermotropic behavior and partial miscibility with palmitoyl sphingomyelin. The Tm was decreased by about 20 °C for all 24:1-sphingolipids compared to the corresponding 24:0-sphingolipids. The ability to pack tightly with ordered and extended acyl chains is a necessity for membrane lipids to partition into ordered domains in membranes and thus the 24:1-sphingolipids appeared less likely to do so. Fluorescence quenching measurements showed that the 24:0-sphingolipids formed ordered domains in multicomponent membranes, both as the only sphingolipid and mixed with palmitoyl sphingomyelin. These domains had a high packing density which appeared to hinder the partitioning of sterols into them, as reported by the fluorescent cholesterol analog cholestatrienol. 24:0-SM was, however, better able to accommodate sterol than the glycosphingolipids. The 24:1-sphingolipids could, depending on head group structure, either stabilize or disrupt ordered sphingolipid/cholesterol domains. We conclude that very long chain sphingolipids, when present in biological membranes, may affect the physical properties of or the distribution of sterols between lateral domains. It was also evident that not only the very long acyl chain but also the specific molecular structure of the sphingolipids was of importance for their membrane properties.  相似文献   

16.
The effects of low concentrations of cholesterol in mixtures of a negatively charged phospholipid (phosphatidylserine or phosphatidylglycerol) and another phospholipid (phosphatidylcholine, sphingomyelin or phosphatidylethanolamine) have been studied by differential scanning calorimetry. Only mixtures which showed a gel phase miscibility gap have been employed. It was demonstrated that in mixtures with phosphatidylethanolamine, cholesterol was preferentially associated with the negatively charged phospholipid, regardless whether this species represented the component with the high or with the low transition temperature in the mixture. In mixtures of a negatively charged phospholipid and phosphatidylcholine, cholesterol associated with the negatively charged phospholipid; when the phosphatidylcholine was the species with the low transition temperature, cholesterol had an affinity for the phosphatidylcholine and for the negatively charged phospholipid as well. Cholesterol, in a mixture of sphingomyelin with a high and phosphatidylserine with a low transition temperature, was preferentially associated with sphingomyelin.From these experiments it is concluded that phospholipids show a decrease in affinity for cholesterol in the following order: sphingomyelin ? phosphatidylserine, phosphatidylglycerol > phosphatidylcholine ? phosphatidylethanolamine.  相似文献   

17.
We carried out comparative DSC and Fourier transform infrared spectroscopic studies of the effects of cholesterol and lanosterol on the thermotropic phase behavior and organization of DPPC bilayers. Lanosterol is the biosynthetic precursor of cholesterol and differs in having three rather than two axial methyl groups projecting from the β-face of the planar steroid ring system and one axial methyl group projecting from the α-face, whereas cholesterol has none. Our DSC studies indicate that the incorporation of lanosterol is more effective than cholesterol is in reducing the enthalpy of the pretransition. Lanosterol is also initially more effective than cholesterol in reducing the enthalpies of both the sharp and broad components of the main phase transition. However, at sterol concentrations of 50 mol %, lanosterol does not abolish the cooperative hydrocarbon chain-melting phase transition as does cholesterol. Moreover, at higher lanosterol concentrations (~30–50 mol %), both sharp and broad low-temperature endotherms appear in the DSC heating scans, suggestive of the formation of lanosterol crystallites, and of the lateral phase separation of lanosterol-enriched phospholipid domains, respectively, at low temperatures, whereas such behavior is not observed with cholesterol at comparable concentrations. Our Fourier transform infrared spectroscopic studies demonstrate that lanosterol incorporation produces a less tightly packed bilayer than does cholesterol, which is characterized by increased hydration in the glycerol backbone region of the DPPC bilayer. These and other results indicate that lanosterol is less miscible in DPPC bilayers than is cholesterol, but perturbs their organization to a greater extent, probably due primarily to the rougher faces and larger cross-sectional area of the lanosterol molecule and perhaps secondarily to its decreased ability to form hydrogen bonds with adjacent DPPC molecules. Nevertheless, lanosterol does appear to produce a lamellar liquid-ordered phase in DPPC bilayers, although this phase is not as tightly packed as comparable cholesterol/DPPC mixtures.  相似文献   

18.
Sulfatides (galactosylceramidesulfates) are negatively charged glycosphingolipids that are important constituents of brain myelin membranes. These membranes are also highly enriched in galactosylceramide and cholesterol. It has been implicated that sulfatides, together with other sphingolipids, take part in lateral domain formation in biological membranes. This study was conducted to characterize the lateral phase behavior of N-palmitoyl-sulfatide in mixed bilayer membranes. Going from simple lipid mixtures with sulfatide as the only sphingolipid in a fluid matrix of POPC, to more complex membranes including other sphingolipids, we have examined 1) ordered domain formation with sulfatide, 2) sterol enrichment in such domains and 3) stabilization of the domains against temperature by the addition of calcium. Using two distinct phase selective fluorescent probes, trans-parinaric acid and cholestatrienol, together with a quencher in the fluid phase, we were able to distinguish between ordered domains in general and ordered domains enriched in sterol. We found that N-palmitoyl-sulfatide formed ordered domains when present as the only sphingolipid in a fluid phospholipid bilayer, but these domains did not contain sterol and their stability was unaffected by calcium. However, at low, physiologically relevant concentrations, sulfatide partitioned favorably into domains enriched in other sphingolipids and cholesterol. These domains were stabilized against temperature in the presence of divalent cations. We conclude that sulfatides are likely to affect the lateral organization of biomembranes.  相似文献   

19.
Here we have studied how the length of the pyrene-labeled acyl chain (n) of a phosphatidylcholine, sphingomyelin, or galactosylceramide affects the partitioning of these lipids between 1), gel and fluid domains coexisting in bovine brain sphingomyelin (BB-SM) or BB-SM/spin-labeled phosphatidylcholine (PC) bilayers or 2), between liquid-disordered and liquid-ordered domains in BB-SM/spin-labeled PC/cholesterol bilayers. The partitioning behavior was deduced either from modeling of pyrene excimer/monomer ratio versus temperature plots, or from quenching of the pyrene monomer fluorescence by spin-labeled PC. New methods were developed to model excimer formation and pyrene lipid quenching in segregated bilayers. The main result is that partition to either gel or liquid-ordered domains increased significantly with increasing length of the labeled acyl chain, probably because the pyrene moiety attached to a long chain perturbs these ordered domains less. Differences in partitioning were also observed between phosphatidylcholine, sphingomyelin, and galactosylceramide, thus indicating that the lipid backbone and headgroup-specific properties are not severely masked by the pyrene moiety. We conclude that pyrene-labeled lipids could be valuable tools when monitoring domain formation in model and biological membranes as well as when assessing the role of membrane domains in lipid trafficking and sorting.  相似文献   

20.
Epand RM  Sayer BG  Epand RF 《Biochemistry》2003,42(49):14677-14689
The peptide N-acetyl-LWYIK-amide causes the reorganization of bilayers of phosphatidylcholine and cholesterol to produce domains enriched in cholesterol. At a cholesterol mol fraction of 0.5, addition of N-acetyl-LWYIK-amide results in the formation of cholesterol crystallites. Addition of this peptide to mixtures of 1-stearoyl-2-oleoylphosphatidylcholine with lower mol fractions of cholesterol results in an increase in the enthalpy of the chain melting transition of the phospholipid, indicating the depletion of cholesterol from a domain in the membrane. The peptide binds to membranes both with and without cholesterol. However, (1)H magic-angle spinning (MAS) nuclear Overhauser effect spectroscopy (NOESY) indicates that in the presence of cholesterol the peptide has greater penetration into the bilayer. (13)C MAS NMR indicates that the peptide has stronger interactions with the A ring of cholesterol than it does with the interior of the bilayer. These results are in contrast with those of another peptide, N-acetyl-KYWFYR-amide, which does not promote the formation of cholesterol crystallites and does not show preferential interaction with cholesterol by NMR. Therefore, cholesterol can promote the insertion of N-acetyl-LWYIK-amide into a membrane and this peptide will sequester cholesterol into domains. These properties help to explain the observation that this sequence is found to be important in causing the fusion protein of human immunodeficiency virus (HIV) to sequester into raft domains in biological membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号