首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Flashlight fishes (Beryciformes: Anomalopidae) harbor luminous symbiotic bacteria in subocular light organs and use the bacterial light for predator avoidance, feeding, and communication. Despite many attempts anomalopid symbionts have not been brought into laboratory culture, which has restricted progress in understanding their phylogenetic relationships with other luminous bacteria, identification of the genes of their luminescence system, as well as the nature of their symbiotic interactions with their fish hosts. To begin addressing these issues, we used culture-independent analysis of the bacteria symbiotic with the anomalopid fish, Anomalops katoptron, to characterize the phylogeny of the bacteria and to identify the genes of their luminescence system including those involved in the regulation of luminescence. Analysis of the 16S rRNA, atpA, gapA, gyrB, pyrH, recA, rpoA, and topA genes resolved the A. katoptron symbionts as a clade nested within and deeply divergent from other members of Vibrionaceae. The bacterial luminescence (lux) genes were identified as a contiguous set (luxCDABEG), as found for the lux operons of other luminous bacteria. Phylogenetic analysis based on the lux genes confirmed the housekeeping gene phylogenetic placement. Furthermore, genes flanking the lux operon in the A. katoptron symbionts differed from those flanking lux operons of other genera of luminous bacteria. We therefore propose the candidate name Candidatus Photodesmus (Greek: photo = light, desmus = servant) katoptron for the species of bacteria symbiotic with A. katoptron. Results of a preliminary genomic analysis for genes regulating luminescence in other bacteria identified only a Vibrio harveyi-type luxR gene. These results suggest that expression of the luminescence system might be continuous in P. katoptron.  相似文献   

2.
A novel BOD sensor based on bacterial luminescence   总被引:4,自引:0,他引:4  
A reagent-type BOD sensor with a new principle employing a luminous bacterium, Photobacterium phosphoreum, was developed. The increased intensity of luminescence resulting from the cellular assimilation of organic compounds in wastewater was detected by a photodiode. The BOD response of the bacterial reagent could be obtained within 15 min with +/-7% error. The temperature condition for optimal BOD response was 18 degrees to 25 degrees C at pH 7 to 8, indicating that it is possible to measure BOD at room temperature without having to stabilize the temperature of the measuring system. For practical use, two procedures for long-term preservation of the bacterial reagent, vacuum drying method and freezing method, are suggested. The metabolic characteristics of employed luminous bacteria were investigated by comparing the BOD values for several pure organic substrates estimated by the BOD sensor with conventional 5-day BOD values. In comparison with the 5-day measurement for some wastewater samples, BOD values estimated by the sensor showed comparatively good agreement with those measured by the 5-day method. (c) 1993 Wiley & Sons, Inc.  相似文献   

3.
A glucose control system consisting of a single in-line glucose sensor, concentrated glucose solution, and computer hardware and software were developed. The system was applied to continuously control glucose concentrations of a perfusion medium in a rotating wall perfused vessel (RWPV) bioreactor culturing BHK-21 cells. The custom-made glucose sensor was based on a hydrogen peroxide electrode. The sensor continuously and accurately measured the glucose concentration of GTSF-2 medium in the RWPV bioreactor during cell culture. Three sets of two-point calibrations were applied to the glucose sensor during the 55-day cell culture. The system first controlled the glucose concentration in perfusing medium between 4.2 and 5.6 mM for 36 days and then at different glucose levels for 19 days. A stock solution with a high glucose concentration (266 mM) was used as the glucose injection solution. The standard error of prediction (SEP) for glucose measurement by the sensor, compared to measurement by the Beckman glucose analyzer, was +/-0.4 mM for 55 days.  相似文献   

4.
The presence of lectins on a cell surface was demonstrated for 70 cultures of luminous bacteria using hemagglutination reactions. It was shown that hemagglutination of luminous bacteria is inhibited by glucose, maltose, fructose, mannose, and N-acetyl-D-glucosamine. The differences in the inhibition of hemagglutination of luminescent and nonluminescent (spontaneous mutants) symbiotic cultures by N-acetyl-D-galactosamine were revealed. The fact that N-acetyl-D-galactosamine inhibits hemagglutination of the luminescent symbiotic bacteria but does not inhibit hemagglutination of the symbiotic cultures lacking luminescence suggests that lectins with N-acetyl-D-galactosamine specificity are possibly involved in the formation and functioning of the symbiosis of luminous bacteria with marine animals possessing luminous organs.  相似文献   

5.
A microbial sensor consisting of immobilized living whole cells of Brevibacterium lactofermentum and an oxygen electrode was prepared for continuous determination of total assimilable sugars (glucose, fructose and sucrose) in a fermentation broth for glutamic acid production. Total assimilable sugars were evaluated from oxygen consumption by the immobilized microorganisms. When a sample solution containing glucose was applied to the sensor system, increased consumption of oxygen by the microorganisms caused a decrease in the dissolved oxygen around the Teflon membrane of the oxygen electrode and the current of the electrode decreased markedly with time until steady state was reached. The response time was ≈ 10 min by the steady state method and 1 min by the pulse method. A linear relationship was found between the decrease in current and the concentration of glucose (<1 mM), fructose (<1 mM) and sucrose (<0.8 mM). The ratio of the sensitivity of the microbial sensor to glucose, fructose and sucrose was 1.00:0.80:0.92. The decrease in current was reproducible to within 2% of the relative standard deviation when a sample solution containing glucose (0.8 mM) was employed for experiments. The selectivity of the microbial sensor for assimilable sugars was satisfactory for use in the fermentation process. The additivity of the response of the microbial sensor for glucose, fructose and sucrose was examined. The difference between the observed and calculated values was within 8%. The microbial sensor was applied to a fermentation broth for glutamic acid production. Total assimilable sugars can be determined by the microbial sensor which can be used for more than 10 days and 960 assays.  相似文献   

6.
Isolation of bacteria from the luminous organ of the fish Monocentris japonica has revealed that the organ contains a pure culture of luminous bacteria. For the four fish examined, all contained Photobacterium fischeri as their luminous bacterial symbiont. This is the first time that P. fischeri has been identified in a symbiotic association. A representative isolate (MJl) of the light organ population was selected for in vivo studies of its luminous system. Several physiological features suggest adaptation for symbiotic existence. First, MJl has been shown to produce and respond to an inducer of luciferase that could accumulate in the light organ. Secondly, the specific activity of light production was seen to be maximal under low, growth-limiting concentrations of oxygen. Thirdly, unlike another luminous species (Beneckea harveyi), synthesis of the light production system of these bacteria is not catabolite repressed by glucose--a possible source of nutrition in the light organ. Fourthly, when grown aerobically on glucose these bacteria excrete pyruvic acid into the medium. This production of pyruvate is a major process, accounting for 30-40% of the glucose utilized and may serve as a form of regulatory and nutritional communication with the host.  相似文献   

7.
An analytical multienzyme system composed of NAD-dependent hydrogenase of Alcaligenes eutrophus, and reductase and luciferase from luminous bacteria was studied. The rate of luminescence increase of this system was found to be proportional to hydrogenase activity. The apparent Michaelis constants for NAD and hydrogen were determined (5 and 40 microM, respectively). The pH optimum is 7.5-9.0. Over the NAD concentration range from 20 to 100 microM, the rate of luminescence increase changed by less than 10%. At higher concentrations of NAD a monotonous decreasing of the rate of luminescence increase was observed. The proposed multienzyme system can be used for measuring the hydrogenase activity and hydrogen concentration. The high sensitivity to hydrogen (0.1 nmol in sample) and to hydrogenase (0.5 mU) and specificity of the system enable its application in the development of a biosensor for rapid detection of hydrogen in a medium.  相似文献   

8.
The myctophids and stomiiforms represent two common groups of luminous fishes, but the source of luminescence in these animals has remained undetermined. In this study, labeled luciferase gene fragments from luminous marine bacteria were used to probe DNA isolated from specific fish tissues. A positive signal was obtained from skin DNA in all luminous fishes examined, whereas muscle DNA gave a weaker signal and brain DNA was negative. This observation is consistent with luminous bacteria acting as the light source in myctophids and stomiiforms and argues against the genes necessary for luminescence residing on the fish chromosomes. To confirm the location of this signal, a bacterial probe was hybridized in situ to sections of a stomiiform. A strong signal was generated directly over specific regions of the fish light organs, whereas no signal was found over other internal or epidermal tissues of the fish. Taken together, these data provide the first indication that luminous bacterial symbionts exist in myctophids and stomiiforms and that these symbionts account for luminescence in these fishes.  相似文献   

9.
Effect of tritium labeled amino acid valine (0.3-1.0 MBq/ml) on luminous bacteria P. Phosphoreum was studied. The amino acid was used as a nutrient medium for the bacteria. Tritium was found to suppress bacterial growth, but stimulate luminescence: luminescence intensity, quantum yield and time of light-emitting were increased. Activation of the luminescent function is explained by redistribution of electronic density at beta-decay, and affecting biochemical processes in the bacterial media. Effects of alpha- and beta-radiation on luminous bacteria are compared.  相似文献   

10.
A method has been designed for the continuous culture of luminous bacteria. The control system for the culture uses a combination of luminescence and optical density as a light signal received by a photomultiplier. This combined signal operates pumps which exchange the growth medium. Using this method, a culture of brightly luminescing bacteria was maintained for periods up to 3 weeks.  相似文献   

11.
The presence of lectins on a cell surface was demonstrated for 70 cultures of luminescent bacteria using hemagglutination reactions. It was shown that hemagglutination of luminescent bacteria is inhibited by glucose, maltose, fructose, mannose, and N-acetyl-D-glucosamine. The differences in the inhibition of hemagglutination of luminescent and nonluminescent (spontaneous mutants) symbiotic cultures by N-acetyl-D-galactosamine were revealed. The fact that N-acetyl-D-galactosamine inhibits hemagglutination of the luminescent symbiotic bacteria but does not inhibit hemagglutination of the symbiotic cultures lacking luminescence suggests that lectins with N-acetyl-D-galactosamine specificity are possibly involved in the formation and functioning of the symbiosis of luminescent bacteria with marine animals possessing luminous organs.  相似文献   

12.
The possibility of the development of the solid phase bioluminescent biotest using aerial mycelium of luminous fungi was investigated. Effect of organic and inorganic toxic compounds (TC) at concentrations from 10−6 to 1 mg/ml on luminescence of aerial mycelia of four species of luminous fungi—Armillaria borealis (Culture Collection of the Institute of Forest, Siberian Branch, Russian Academy of Sciences), A. mellea, A. gallica, and Lampteromyces japonicus (Fungi Collection of the Botanical Institute, Russian Academy of Sciences)—has been studied. Culture of A. mellea was shown to be most sensitive to solutions of the model TC. It was demonstrated that the sensitivity of the luminous fungi is comparable with the sensitivity of the bacteria that are used for environmental monitoring. Use of the aerial mycelium of luminous fungi on the solid support as a test object is a promising approach in biotesting for the development of continuous biosensors for air monitoring.  相似文献   

13.
14.
Seawater samples from a variety of locations contained viable luminous bacteria, but luminescence was not detectable although the system used to measure light was sensitive enough to measure light from a single, fully induced luminous bacterial cell. When the symbiotically luminous fishCleidopus gloriamaris was placed in a sterile aquarium, plate counts of water samples showed an increase in luminous colony-forming units. Luminescence also increased, decreasing when the fish was removed. Light measurements of water samples from a sterile aquarium containingPhotoblepharon palpebratus, another symbiotically luminous fish, whose bacterial symbionts have not been cultured, showed a similar pattern of increasing light which rapidly decreased upon removal of the fish. These experiments suggest that symbiotically luminous fishes release brightly luminous bacteria from light organs into their environment and may be a source of planktonic luminous bacteria. Although planktonic luminous bacteria are generally not bright when found in seawater, water samples from environments with populations of symbiotically luminous fish may show detectable levels of light.  相似文献   

15.
The study of sensitivity of luminous bacteria isolated from the Black and Azov seas to surfactants from various classes was carried out. It was shown that cationic surfactants had a strong inhibition effect on bacterial luminescence in contrast to anionic and in particular nonionic surfactants. To increase the luminous bacteria sensitivity to the action of OP-10 (nonionic surfactant) and ABS (anionic surfactant), which are widely used in industry, several approaches have been developed. They include modulation of bacterial sensitivity by the additives of cationic substances, use of luminous bacteria at a logarithmic stage of growth, realization of biotesting at low pH = 5.5. The use of these approaches allows to lower effective concentrations of OP-10 and ABS, which caused a decrease of bioluminescence by 50%, 3-200 times and opens perspectives for the use of the bioluminescent method to study these surfactants toxicity on the principle of biosensorics.  相似文献   

16.
Containment sensors for the determination of L-lactate and glucose   总被引:3,自引:0,他引:3  
This paper reports some new results on enzyme based silicon containment sensors. For the first time an L-lactate sensor in containment technology is presented. Through optimization of the buffer system the stability of the lactate sensor was enhanced and the linear response of over 10 mM was achieved. The glucose sensor has also been optimized for a large linear measurement range exceeding 30 mM. A two-enzyme chip with glucose and lactate sensor elements which were integrated on one silicon chip is presented. The response behaviour of the two-enzyme chip was very similar to the single chip behaviour. No cross-talking effects could be observed. A fabrication process for mass-production is described.  相似文献   

17.
The potential use of hydrazine sulfate was examined for the catalytic reduction of enzymatically generated H2O2 in a biosensor system. The performance of the hydrazine-based sensor was compared with an HRP-based glucose sensor as a model of a biosensor. Hydrazine and HRP were covalently immobilized onto a conducting polymer layer with glucose oxidase. The direct electron transfer reactions of the immobilized hydrazine and HRP onto the poly-5,2':5,2'-terthiophene-3'-carboxylic acid (poly-TTCA) layer were investigated by using cyclic voltammetric method and the electron transfer rate constants were determined. The glucose oxidase- and hydrazine-immobilized sensor efficiently reduced the enzymatically generated H2O2 at -0.15 V versus Ag/AgCl. The surface of this GOx/hydrazine/poly-TTCA-based glucose sensor was characterized by QCM, SEM, and ESCA. Glucose-sensing properties were studied using cyclic voltammetric and chronoamperometric techniques. Various experimental parameters were optimized according to the amount of hydrazine, pH, the temperature, and the applied potential. A linear calibration plot was obtained in the concentration range between 0.1 and 15.0 mM, and the detection limit was determined to be 40.0+/-7.0 microM. Interferences from other biological compounds were studied. The long-term stability of the GOx/hydrazine sensor was better than that of the one based on a GOx/HRP biosensor. The proposed glucose sensor was successfully applied to human whole blood and urine samples for the detection of glucose.  相似文献   

18.
B arak , M., M erzbach D. & U litzur , S. 1985. A note on the increased permeability of opsonized luminous bacteria. Journal of Applied Bacteriology 59 , 57–59.
Opsonization of a dark variant of the luminous bacterium Photobacterium leiog-nathi by pooled human serum caused an increase in the permeability of the organism to actinomycin D, as judged by the inhibition of the proflavin-induced synthesis of its luminescence system.  相似文献   

19.
Ai H  Huang X  Zhu Z  Liu J  Chi Q  Li Y  Li Z  Ji X 《Biosensors & bioelectronics》2008,24(4):1054-1058
A novel cheap and simple amperometric glucose biosensor, based on the electrode modified with the Ni/Al layered double hydroxide (LDH) nanoflakes and chitosan (CHT), without glucose oxidase, is presented. The glucose biosensor based on monodispersed high active Ni/Al-LDH nanoflakes and CHT exhibits an appropriate linear range of 0.01-10mM and good operational stability. The amperometric sensor shows a rapid response at the potential value 0.48V. In addition, optimization of the biosensor construction, the effects of the applied potential, the scan rate as well as common interfering compounds on the amperometric response and human serum samples analysis of the sensor were investigated and discussed.  相似文献   

20.
Methods are described for measuring the light emitted by an emulsion of luminous bacteria of given thickness, and calculating the light emitted by a single bacterium, measuring 1.1 x 2.2 micra, provided there is no absorption of light in the emulsion. At the same time, the oxygen consumed by a single bacterium was measured by recording the time for the bacteria to use up .9 of the oxygen dissolved in sea water from air (20 per cent oxygen). The luminescence intensity does not diminish until the oxygen concentration falls below 2 per cent, when the luminescence diminishes rapidly. Above 2 per cent oxygen (when the oxygen dissolving in sea water from pure oxygen at 760 mm. Hg pressure = 100 per cent) the bacteria use equal amounts of oxygen in equal times, while below 2 per cent oxygen it seems very likely that rate of oxygen absorption is proportional to oxygen concentration. By measuring the time for a tube of luminous bacteria of known concentration saturated with air (20 per cent oxygen) to begin to darken (2 per cent oxygen) we can calculate the oxygen absorbed by one bacterium per second. The bacteria per cc. are counted on a blood counting slide or by a centrifugal method, after measuring the volume of a single bacterium (1.695 x 10–12 cc.). Both methods gave results in good agreement with each other. The maximum value for the light from a single bacterium was 24 x 10–14 lumens or 1.9 x 10–14 candles. The maximum value for lumen-seconds per mg. of oxygen absorbed was 14. The average value for lumen-seconds per mg. O2 was 9.25. The maximum values were selected in calculating the efficiency of light production, since some of the bacteria counted may not be producing light, although they may still be using oxygen. The "diet" of the bacteria was 60 per cent glycerol and 40 per cent peptone. To oxidize this mixture each mg. of oxygen would yield 3.38 gm. calories or 14.1 watts per second. 1 lumen per watt is therefore produced by a normal bacterium which emits 14 lumen-seconds per mg. O2 absorbed. Since the maximum lumens per watt are 640, representing 100 per cent efficiency, the total luminous efficiency if .00156. As some of the oxygen is used in respiratory oxidation which may have nothing to do with luminescence, the luminescence efficiency must be higher than 1 lumen per watt. Experiments with KCN show that this substance may reduce the oxygen consumption to 1/20 of its former value while reducing the luminescence intensity only ¼. A partial separation of respiratory from luminescence oxidations is therefore effected by KCN, and our efficiency becomes 5 lumens per watt, or .0078. This is an over-all efficiency, based on the energy value of the "fuel" of the bacteria, regarded as a power plant for producing light. It compares very favorably with the 1.6 lumens per watt of a tungsten vacuum lamp or the 3.9 lumens per watt of a tungsten nitrogen lamp, if we correct the usual values for these illuminants, based on watts at the lamp terminals, for a 20 per cent efficiency of the power plant converting the energy of coal fuel into electric current. The specific luminous emission of the bacteria is 3.14 x 10–6 lumens per cm2. One bacterium absorbs 215,000 molecules of oxygen per second and emits 1,280 quanta of light at λmax = 510µµ. If we suppose that a molecule of oxygen uniting with luminous material gives rise to the emission of 1 quantum of light energy, only 1/168 of the oxygen absorbed is used in luminescence. On this basis the efficiency becomes 168 lumens per watt or 26.2 per cent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号