首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Hmx homeobox gene family is comprised of three members in mammals, Hmx1, Hmx2, and Hmx3, which are conserved across the animal kingdom and are part of the larger NKL clustered family of homeobox genes. Expression domains of Hmx genes in distantly related species such as Drosophila and mouse suggest an ancestral function in rostral central nervous system development. During vertebrate evolution, the Hmx genes appear to have been recruited into additional roles in inner ear morphogenesis and specification of vestibular inner ear sensory and supporting cell types. Being derived from a common ancestor, the vertebrate Hmx gene family is thus a strong candidate to investigate functional overlap versus the unique roles played by multiple genes belonging to the same family. The functions of Hmx2 and Hmx3 were investigated via directed gene mutagenesis and the primary regions where Hmx2 and Hmx3 exert their individual functions are consistent with their expression domains, such as the vestibule and uterus. Meanwhile, it is notable that some tissues where both Hmx2 and Hmx3 are extensively expressed were not severely affected in either of the Hmx2 or Hmx3 single mutant mice, suggesting a possible functional overlap existing between these two genes. Compound Hmx2 and Hmx3 double mutant mice showed more severe defects in the inner ear than those displayed by either single knockout. Furthermore, novel abnormalities in the hypothalamic-neuroendocrine system, which were never observed in either of the single mutant mice, confirmed a hypothesis that Hmx2 and Hmx3 also function redundantly to control embryonic development of the central nervous system.  相似文献   

2.
3.
Three homeobox genes, one from Drosophila melanogaster (Drosophila Hmx gene) and two from mouse (murine Hmx2 and Hmx3) were isolated and the full-length cDNAs and corresponding genomic structures were characterized. The striking homeodomain similarity encoded by these three genes to previously identified genes in sea urchin, chick and human, as well as the recently cloned murine Hmx1 gene, and the low homology to other homeobox genes indicate that the Hmx genes comprise a novel gene family. The widespread existence of Hmx genes in the animal kingdom suggests that this gene family is of ancient origin. Drosophila Hmx was mapped to the 90B5 region of Chromosome 3 and at early embryonic stages is primarily expressed in distinct areas of the neuroectoderm and subsets of neuroblasts in the developing fly brain. Later its expression continues in rostral areas of the brain in a segmented pattern, suggesting a putative role in the development of the Drosophila central nervous system. During evolution, mouse Hmx2 and Hmx3 may have retained a primary function in central nervous system development as suggested by their expression in the postmitotic cells of the neural tube, as well as in the hypothalamus, the mesencephalon, metencephalon and discrete regions in the myelencephalon during embryogenesis. Hmx1 has diverged from other Hmx members by its expression in the dorsal root, sympathetic and vagal nerve (X) ganglia. Aside from their expression in the developing nervous system, all three Hmx genes display expression in sensory organ development, and in the adult uterus. Hmx2 and Hmx3 show identical expression in the otic vesicle, whereas Hmx1 is strongly expressed in the developing eye. Transgenic mouse lines were generated to examine the DNA regulatory elements controlling Hmx2 and Hmx3. Transgenic constructs spanning more than 31 kb of genomic DNA gave reproducible expression patterns in the developing central and peripheral nervous systems, eye, ear and other tissues, yet failed to fully recapitulate the endogenous expression pattern of either Hmx2 or Hmx3, suggesting both the presence and absence of certain critical enhancers in the transgenes, or the requirement of proximal enhancers to work synergistically.  相似文献   

4.
5.
6.
7.
The Hmx homeobox gene family is comprised of three members in mammals, Hmx1, Hmx2, and Hmx3, which are conserved across the animal kingdom and are part of the larger NKL clustered family of homeobox genes. Expression domains of Hmx genes in distantly related species such as Drosophila and mouse suggest an ancestral function in rostral central nervous system development. During vertebrate evolution, the Hmx genes appear to have been recruited into additional roles in inner ear morphogenesis and specification of vestibular inner ear sensory and supporting cell types. Being derived from a common ancestor, the vertebrate Hmx gene family is thus a strong candidate to investigate functional overlap versus the unique roles played by multiple genes belonging to the same family. The functions of Hmx2 and Hmx3 were investigated via directed gene mutagenesis and the primary regions where Hmx2 and Hmx3 exert their individual functions are consistent with their expression domains, such as the vestibule and uterus. Meanwhile, it is notable that some tissues where both Hmx2 and Hmx3 are extensively expressed were not severely affected in either of the Hmx2 or Hmx3 single mutant mice, suggesting a possible functional overlap existing between these two genes. Compound Hmx2 and Hmx3 double mutant mice showed more severe defects in the inner ear than those displayed by either single knockout. Furthermore, novel abnormalities in the hypothalamic–neuroendocrine system, which were never observed in either of the single mutant mice, confirmed a hypothesis that Hmx2 and Hmx3 also function redundantly to control embryonic development of the central nervous system.  相似文献   

8.
9.
The Otx1 and Otx2 genes are two murine orthologues of the Orthodenticle (Otd) gene in Drosophila. In the developing mouse embryo, both Otx genes are expressed in the rostral head region and in certain sense organs such as the inner ear. Previous studies have shown that mice lacking Otx1 display abnormal patterning of the brain, whereas embryos lacking Otx2 develop without heads. In this study, we examined, at different developmental stages, the inner ears of mice lacking both Otx1 and Otx2 genes. In wild-type inner ears, Otx1, but not Otx2, was expressed in the lateral canal and ampulla, as well as part of the utricle. Ventral to the mid-level of the presumptive utricle, Otx1 and Otx2 were co-expressed, in regions such as the saccule and cochlea. Paint-filled membranous labyrinths of Otx1-/- mutants showed an absence of the lateral semicircular canal, lateral ampulla, utriculosaccular duct and cochleosaccular duct, and a poorly defined hook (the proximal part) of the cochlea. Defects in the shape of the saccule and cochlea were variable in Otx1-/- mice and were much more severe in an Otx1-/-;Otx2(+/)- background. Histological and in situ hybridization experiments of both Otx1-/- and Otx1-/-;Otx2(+/)- mutants revealed that the lateral crista was absent. In addition, the maculae of the utricle and saccule were partially fused. In mutant mice in which both copies of the Otx1 gene were replaced with a human Otx2 cDNA (hOtx2(1)/ hOtx2(1)), most of the defects associated with Otx1-/- mutants were rescued. However, within the inner ear, hOtx2 expression failed to rescue the lateral canal and ampulla phenotypes, and only variable rescues were observed in regions where both Otx1 and Otx2 are normally expressed. These results suggest that both Otx genes play important and differing roles in the morphogenesis of the mouse inner ear and the development of its sensory organs.  相似文献   

10.
Genetic and molecular roles of Otx homeodomain proteins in head development   总被引:2,自引:0,他引:2  
Acampora D  Gulisano M  Simeone A 《Gene》2000,246(1-2):23-35
  相似文献   

11.
12.
13.
14.
We have identified cis-regulatory sequences acting on Otx2 expression in epiblast (EP) and anterior neuroectoderm (AN) at about 90 kb 5' upstream. The activity of the EP enhancer is found in the inner cell mass at E3.5 and the entire epiblast at E5.5. The AN enhancer activity is detected initially at E7.0 and ceases by E8.5; it is found later in the dorsomedial aspect of the telencephalon at E10.5. The EP enhancer includes multiple required domains over 2.3 kb, and the AN enhancer is an essential component of the EP enhancer. Mutants lacking the AN enhancer have demonstrated that these cis-sequences indeed regulate Otx2 expression in EP and AN. At the same time, our analysis indicates that another EP and AN enhancer must exist outside of the -170 kb to +120 kb range. In Otx2DeltaAN/- mutants, in which one Otx2 allele lacks the AN enhancer and the other allele is null, anteroposterior axis forms normally and anterior neuroectoderm is normally induced. Subsequently, however, forebrain and midbrain are lost, indicating that Otx2 expression under the AN enhancer functions to maintain anterior neuroectoderm once induced. Furthermore, Otx2 under the AN enhancer cooperates with Emx2 in diencephalon development. The AN enhancer region is conserved among mouse, human and Xenopus; moreover, the counterpart region in Xenopus exhibited an enhancer activity in mouse anterior neuroectoderm.  相似文献   

15.
16.
In many bilaterian animals members of the Otx gene family are expressed in head or brain structures. Cnidarians, however, have no clearly homologous head and no distinct brain; but an Otx homolog from the jellyfish Podocoryne carnea is highly conserved in sequence and domain structure. Sequence similarities extend well beyond the homeodomain and Podocoryne Otx can be aligned over its entire length to human OTX1, OTX2, and CRX. The overall structure of Otx is better conserved from Podocoryne to deuterostomes while protostomes appear to be more derived. In contrast, functions seem to be conserved from protostomes to vertebrates but not in Podocoryne or echinoderms. Podocoryne Otx is expressed only during medusa bud formation and becomes restricted to the striated muscle of medusae. Cnidaria are the most basal animals with striated muscle. Podocoryne polyps have no striated muscle and no Otx expression; both appear only during the asexual medusa budding process. The common ancestor of all animals that gave rise to cnidarians, protostomes, and deuterostomes already had an Otx gene more similar to today's Podocoryne and human homologs than to Drosophila otd, while the head-specific function appears to have evolved only later.  相似文献   

17.
Heme oxygenases convert heme to free iron, CO, and biliverdin. Saccharomyces cerevisiae and Candida albicans express putative heme oxygenases that are required for the acquisition of iron from heme, a critical process for fungal survival and virulence. The putative heme oxygenases Hmx1 and CaHmx1 from S. cerevisiae and C. albicans, respectively, minus the sequences coding for C-terminal membrane-binding domains, have been expressed in Escherichia coli. The C-terminal His-tagged, truncated enzymes are obtained as soluble, active proteins. Purified ferric Hmx1 and CaHmx1 have Soret absorption maxima at 404 and 410 nm, respectively. The apparent heme binding Kd values for Hmx1 and CaHmx1 are 0.34 +/- 0.09 microM and 1.0 +/- 0.2 microM, respectively. The resonance Raman spectra of Hmx1 reveal a heme binding pocket similar to those of the mammalian and bacterial heme oxygenases. Several reductants, including ascorbate, yeast cytochrome P450 reductase (CPR), human CPR, spinach ferredoxin/ferredoxin reductase, and putidaredoxin/putidaredoxin reductase, are able to provide electrons for biliverdin production by Hmx1 and CaHmx1. Of these, ascorbate is the most effective reducing partner. Heme oxidation by Hmx1 and CaHmx1 regiospecifically produces biliverdin IXalpha. Spectroscopic analysis of aerobic reactions with H2O2 identifies verdoheme as a reaction intermediate. Hmx1 and CaHmx1 are the first fungal heme oxygenases to be heterologously overexpressed and characterized. Their heme degradation activity is consistent with a role in iron acquisition.  相似文献   

18.
The origin of molecular mechanisms of cephalic development is an intriguing question in evolutionary and developmental biology. Ascidians, positioned near the origin of the phylum Chordata, share a conserved set of anteroposterior patterning genes with vertebrates. Here we report the cross-phylum regulatory potential of the ascidian Otx gene in the development of the Drosophila brain and the head vertex structures. The ascidian Otx gene rescued the embryonic brain defect caused by a null mutation of the Drosophila orthodenticle (otd) gene and enhanced rostral brain development while it suppressed trunk nerve cord formation. Furthermore, the ascidian Otx gene restored the head vertex defects caused by a viable otd mutation, ocelliless, via specific activation and repression of downstream regulatory genes. These cross-phylum regulatory potentials of the ascidian Otx gene are equivalent to the activities of the Drosophila and human otd/Otx genes in these developmental processes. These results support the notion that basal chordates such as ascidians have the same molecular patterning mechanism for the anterior structures found in higher chordates, and suggest a common genetic program of cephalic development in invertebrate, protochordate and vertebrate.  相似文献   

19.
The inner ear of adult agnathan vertebrates is relatively symmetric about the anteroposterior axis, with only two semicircular canals and a single sensory macula. This contrasts with the highly asymmetric gnathostome arrangement of three canals and several separate maculae. Symmetric ears can be obtained experimentally in gnathostomes in several ways, including by manipulation of zebrafish Hedgehog signalling, and it has been suggested that these phenotypes might represent an atavistic condition. We have found, however, that the symmetry of the adult lamprey inner ear is not reflected in its early development; the lamprey otic vesicle is highly asymmetric about the anteroposterior axis, both morphologically and molecularly, and bears a striking resemblance to the zebrafish otic vesicle. The single sensory macula originates as two foci of hair cells, and later shows regions of homology to the zebrafish utricular and saccular maculae. It is likely, therefore, that the last common ancestor of lampreys and gnathostomes already had well-defined otic anteroposterior asymmetries. Both lamprey and zebrafish otic vesicles express a target of Hedgehog signalling, patched, indicating that both are responsive to Hedgehog signalling. One significant distinction between agnathans and gnathostomes, however, is the acquisition of otic Otx1 expression in the gnathostome lineage. We show that Otx1 knockdown in zebrafish, as in Otx1(-/-) mice, gives rise to lamprey-like inner ears. The role of Otx1 in the gnathostome ear is therefore highly conserved; otic Otx1 expression is likely to account not only for the gain of a third semicircular canal and crista in gnathostomes, but also for the separation of the zones of the single macula into distinct regions.  相似文献   

20.
Previous studies have shown that the homeobox gene Otx2 is required first in the visceral endoderm for induction of forebrain and midbrain, and subsequently in the neurectoderm for its regional specification. Here, we demonstrate that Otx2 functions both cell autonomously and non-cell autonomously in neurectoderm cells of the forebrain and midbrain to regulate expression of region-specific homeobox and cell adhesion genes. Using chimeras containing both Otx2 mutant and wild-type cells in the brain, we observe a reduction or loss of expression of Rpx/Hesx1, Wnt1, R-cadherin and ephrin-A2 in mutant cells, whereas expression of En2 and Six3 is rescued by surrounding wild-type cells. Forebrain Otx2 mutant cells subsequently undergo apoptosis. Altogether, this study demonstrates that Otx2 is an important regulator of brain patterning and morphogenesis, through its regulation of candidate target genes such as Rpx/Hesx1, Wnt1, R-cadherin and ephrin-A2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号