首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A method for improving the efficiency of exchange transfusion to evaluate hemoglobin- (Hb) based erythrocyte substitutes is described. The method uses a continuous-flow hollow-fiber plasma separation filter to remove the erythrocytes while returning 75% of the plasma. The removed volume was replaced with a 14-g/dl solution of human Hb cross-linked between the alpha-chains with bis(3,5-dibromosalicyl)fumarate (alpha alpha Hb). Filtration of 2.76 blood vol in anesthetized swine resulted in a 95% reduction of hematocrit and produced a plasma Hb concentration of 7.63 g/dl. Hyperoncotic Hb solutions cause volume expansion, which reduces the efficiency of exchange but provides hemodynamic stability in the face of decreasing blood viscosity and subsequent intravascular volume loss with Hb redistribution. Filtration-assisted exchange transfusion is rapid, conserves valuable modified Hb, and ensures continuous adequate oxygen delivery.  相似文献   

2.
The O2-carrying blood substitute based on polymerized bovine hemoglobin (PBH) was used to determine efficacy in maintaining tissue Po2 after an 80% isovolemic blood exchange leading to a hematocrit of 19% [5.4 g Hb/dl from red blood cells (RBCs) and 6.3 g Hb/dl from PBH]. Effects were studied in terms of O2 delivery, O2 extraction, and tissue Po2 at the microcirculatory level at 1, 12, and 24 h after exchange transfusion in awake hamsters prepared with a window chamber model. At 1 h after exchange, arteriolar and venular diameters were decreased compared with baseline. Arteriolar diameter did not fully recover at 12 h after exchange, but venular diameter returned to normal. At 24 h after exchange, arteriolar and venular diameters were not different from baseline. Combining diameter and flow velocity data allowed us to calculate arteriolar and venular flows. At 1 h after exchange, arteriolar and venular flow was reduced compared with baseline. Arteriolar flow was lower at 12 h after exchange and recovered after 24 h. The number of capillaries with RBC passage [functional capillary density (FCD)] at 1 h after exchange with PBH was significantly lower than baseline. FCD remained decreased at 12 h; at 24 h after exchange transfusion, FCD was fully recovered. Tissue Po2 was maximal at 1 h after exchange and decreased progressively at 12 and 24 h after exchange. O2 release to the tissue was minimal at 1 h and increased at 12 and 24 h after exchange. These results suggest the impairment of tissue O2 metabolism after introduction of PBH into the circulation, which is mitigated as PBH concentration declines.  相似文献   

3.
O2-carrying fluids based on hemoglobin (Hb) are in various stages of clinical trials to determine their suitability as O2-carrying plasma expanders. Polymerized Hb solutions are characterized by their vasoactivity, low O2 affinity, oncotic effect, prolonged shelf life, and stability. Physiological responses to facilitated O2 transport after exchange transfusion with polymerized bovine Hb (PBH) were studied in the hamster window chamber model during acute moderate anemia to determine how PBH affects microvascular perfusion and tissue oxygenation. The anemic state [29% hematocrit (Hct)] was induced by hemodilution with a plasma expander (70 kDa dextran). After hemodilution, animals were randomly assigned to different exchange transfusion groups. Study groups were based on the concentration of PBH used, namely: PBH at 13 g Hb/dl [PBH13], PBH diluted to 8 (PBH8) or 4 (PBH4) g Hb/dl in albumin solution at matching colloidal osmotic pressure (COP), and no PBH (only albumin solution) at matching COP (PBH0). Measurement of systemic parameters, microvascular hemodynamics, capillary perfusion, and intravascular and tissue O2 levels was performed at 18% Hct. Restitution of O2-carrying capacity with PBH13 increased arterial pressure and triggered vasoconstriction, low perfusion, and high peripheral resistance. PBH4 and PBH0 exhibited lower arterial pressures compared with PBH13. Exchange transfused animals with PBH8 and PBH4 better maintained perfusion and functional capillary density than PBH13. Blood gas parameters and acid-base balance were recovered proportional to microvascular perfusion. Arterial O2 tensions were improved with PBH4 and PBH8 by preventing O2 precapillary release and increasing O2 reserve. Further studies to establish PBH optimal dosage, efficacy, safety, and its effect on outcome are indicated before Hb-based O2-carrying blood substitutes are implemented in routine practice.  相似文献   

4.
We have reported a new polyethylene glycol (PEG)-modified, hemoglobin-based O2 carrier (MP4) with novel properties, including a large molecular excluded volume and low PO2 necessary to obtain 50% O2 (approximately 6 Torr). To evaluate the ability of MP4 to transport O2, we compared it with PEG-modified albumin (MPA) using the identical chemistry of attachment of PEG chains. The resulting solutions were well matched with respect to all physical properties except that MP4 is an O2 carrier, whereas MPA is not. An additional solution, 10% pentastarch, was matched with the PEG-modified proteins with regard to oncotic activity and viscosity but does not contain PEG. The model used to evaluate O2 transport was continuous exchange transfusion in the rat until the hematocrit was virtually unmeasurable. Objective end points included survival and the onset of anaerobic metabolism, signaled by acid-base derangement and accumulation of lactic acid. Continuous exchange transfusion of 2.5 blood volumes in rats (n=5 in each treatment group) was carried out over 60 min, such that the final hematocrit was between 0 and 5% in all animals. Animals were observed for an additional 70 min, when survivors were killed. Overall survival for the MP4 animals was 100%; no animal that received either pentastarch or MPA survived. The hematocrit at which lactic acid began to rise was approximately 14.8% in both pentastarch and MPA animals and 7.4% in the animals that received MP4. In all groups, the total hemoglobin was approximately 5 g/dl at this point. We conclude that, despite its low PO2 necessary to obtain 50% O2, MP4 effectively substitutes for red blood cell hemoglobin in its ability to oxygenate tissues in extreme hemodilution.  相似文献   

5.
A hemoglobin (Hb)-based oxygen carrier was successfully transfused into rats. An ultrapure lipid-free bovine Hb was prepared by hypotonic dialysis and ultrafiltration. The Hb was polymerized with glutaraldehyde and the P50 was 24.3 mm Hg. On the basis of immunological analysis, immuno-dot blot, the Hb preparations were not antigenic. A second transfusion produced no adverse immunological side effects. A right shift in P50 was obtained by further treatment of polymerized Hb with inositol hexaphosphate; however, this Hb preparation was unsuitable for transfusion as all animals died within a few minutes. A 30% exchange transfusion in rats with the polymerized bovine Hb resulted in a 100% survival of all animals. P50 values of treated animals were reduced by about 2 mm Hg for 14 days. The Hb product circulated for 14 days as determined by 51Cr labeling. Ultrapure bovine Hb has the potential to circulate and carry oxygen in rats and causes no immunological side effects.  相似文献   

6.
Modified Hb solutions have been developed as O(2) carrier transfusion fluids, but of concern is the possibility that increased scavenging of nitric oxide (NO) within the plasma will alter vascular reactivity even if the Hb does not readily extravasate. The effect of decreasing hematocrit from approximately 30% to 18% by an exchange transfusion of a 6% sebacyl cross-linked tetrameric Hb solution on the diameter of pial arterioles possessing tight endothelial junctions was examined through a cranial window in anesthetized cats with and without a NO synthase (NOS) inhibitor. Superfusion of a NOS inhibitor decreased diameter, and subsequent Hb transfusion produced additional constriction that was not different from Hb transfusion alone but was different from the dilation observed by exchange transfusion of an albumin solution after NOS inhibition. In contrast, abluminal application of the cross-linked Hb produced constriction that was attenuated by the NOS inhibitor. Neither abluminal nor intraluminal cross-linked Hb interfered with pial arteriolar dilation to cromakalim, an activator of ATP-sensitive potassium channels. Pial vascular reactivity to hypocapnia and hypercapnia was unaffected by Hb transfusion. Microsphere-determined regional blood flow indicated selective decreases in perfusion after Hb transfusion in the kidney, small intestine, and neurohypophysis, which does not have tight endothelial junctions. Administration of a NOS inhibitor to reduce the basal level of NO available for scavenging before Hb transfusion prevented further decreases in blood flow to these regions compared with NOS inhibition alone. In contrast, blood flow to skeletal and left ventricular muscle increased, and cerebral blood flow was unchanged after Hb transfusion. This cross-linked Hb tetramer is known to appear in renal lymph but not in urine. We conclude that cell-free tetrameric Hb does not scavenge sufficient NO in the plasma space to significantly affect baseline tone in vascular beds with tight endothelial junctions but does produce substantial constriction in beds with porous endothelium. The data support increasing the molecular size of Hb by polymerization or conjugation to limit extravasation in all vascular beds to preserve normal vascular reactivity.  相似文献   

7.
Four recombinant mutants of human fetal hemoglobin [Hb F (alpha2gamma2)] with amino acid substitutions at the position 43 of the gamma-chain, rHb (gammaD43L), rHb (gammaD43E), rHb (gammaD43W), and rHb (gammaD43R), have been expressed in our Escherichia coli expression system and used to investigate their inhibitory effect on the polymerization of deoxygenated sickle cell hemoglobin (Hb S). Oxygen-binding studies show that rHb (gammaD43E), rHb (gammaD43W), and rHb (gammaD43R) exhibit higher oxygen affinity than human normal adult hemoglobin (Hb A), Hb F, or rHb (gammaD43L), and all four rHbs are cooperative in binding O2. Proton nuclear magnetic resonance (NMR) studies of these four rHbs indicate that the quaternary and tertiary structures around the heme pockets are similar to those of Hb F in both deoxy (T) and liganded (R) states. Solution light-scattering experiments indicate that these mutants remain mostly tetrameric in the liganded (R) state. In equimolar mixtures of Hb S and each of the four rHb mutants (gammaD43L, gammaD43E, gammaD43R, and gammaD43W), the solubility (Csat) of each of the pairs of Hbs is higher than that of a similar mixture of Hb S and Hb A, as measured by dextran-Csat experiments. Furthermore, the Csat values for Hb S/rHb (gammaD43L), Hb S/rHb (gammaD43E), and Hb S/rHb (gammaD43R) mixtures are substantially higher than that for Hb S/Hb F. The results suggest that these three mutants of Hb F are more effective than Hb F in inhibiting the polymerization of deoxy-Hb S in equimolar mixtures.  相似文献   

8.

Background

Sulphadoxine-Pyrimethamine (SP) is still the only recommended antimalarial for use in intermittent preventive treatment of malaria during pregnancy (IPTp) in some malaria endemic countries including Ghana. SP has the potential to cause acute haemolysis in G6PD deficient people resulting in significant haemoglobin (Hb) drop but there is limited data on post SP-IPTp Hb drop. This study determined the difference, if any in proportions of women with significant acute haemoglobin drop between G6PD normal, partial deficient and full deficient women after SP-IPTp.

Methods and Findings

Prospectively, 1518 pregnant women who received SP for IPTp as part of their normal antenatal care were enrolled. Their G6PD status were determined at enrollment followed by assessments on days 3, 7,14 and 28 to document any adverse effects and changes in post-IPTp haemoglobin (Hb) levels. The three groups were comparable at baseline except for their mean Hb (10.3 g/dL for G6PD normal, 10.8 g/dL for G6PD partial deficient and 10.8 g/dL for G6PD full defect women).The prevalence of G6PD full defect was 2.3% and 17.0% for G6PD partial defect. There was no difference in the proportions with fractional Hb drop ≥ 20% as compared to their baseline value post SP-IPTp among the 3 groups on days 3, 7, 14. The G6PD full defect group had the highest median fractional drop at day 7. There was a weak negative correlation between G6PD activity and fractional Hb drop. There was no statistical difference between the three groups in the proportions of those who started the study with Hb ≥ 8g/dl whose Hb level subsequently fell below 8g/dl post-SP IPTp. No study participant required transfusion or hospitalization for severe anaemia.

Conclusions

There was no significant difference between G6PD normal and deficient women in proportions with significant acute haemoglobin drop post SP-IPTp and lower G6PD enzyme activity was not strongly associated with significant acute drug-induced haemoglobin drop post SP-IPTp but a larger study is required to confirm consistency of findings.  相似文献   

9.
The unliganded tetrameric Hb S has axial and lateral contacts with neighbors and can polymerize in solution. Novel recombinants of Hb S with single amino acid substitutions at the putative axial (recombinant Hb (rHb) (βE6V/αH20R) and rHb (βE6V/αH20Q)) or lateral (rHb (βE6V/αH50Q)) or double amino acid substitutions at both the putative axial and lateral (rHb (βE6V/αH20R/αH50Q) and rHb (βE6V/αH20Q/αH50Q)) contact sites were expressed in Escherichia coli and purified for structural and functional studies. The 1H NMR spectra of the CO and deoxy forms of these mutants indicate that substitutions at either αHis-20 or αHis-50 do not change the subunit interfaces or the heme pockets of the proteins. The double mutants show only slight structural alteration in the β-heme pockets. All mutants have similar cooperativity (n50), alkaline Bohr effect, and autoxidation rate as Hb S. The oxygen binding affinity (P50) of the single mutants is comparable with that of Hb S. The double mutants bind oxygen with slightly higher affinity than Hb S under the acidic conditions. In high salt, rHb (βE6V/αH20R) is the only mutant that has a shorter delay time of polymerization and forms polymers more readily than Hb S with a dextran-Csat value of 1.86 ± 0.20 g/dl. Hb S, rHb (βE6V/αH20Q), rHb (βE6V/αH50Q), rHb (βE6V/αH20R/αH50Q), and rHb (βE6V/αH20Q/αH50Q) have dextran-Csat values of 2.95 ± 0.10, 3.04 ± 0.17, 11.78 ± 0.59, 7.11 ± 0.66, and 10.89 ± 0.83 g/dl, respectively. rHb (βE6V/αH20Q/αH50Q) is even more stable than Hb S under elevated temperature (60 °C).  相似文献   

10.
Many hemoglobin-based oxygen carriers (HBOCs) produce systemic and pulmonary hypertension and may increase microvascular permeability as a consequence of nitric oxide (NO) scavenging. In this study, we examined the effects of two recombinant human hemoglobin solutions, rHb1.1 and rHb2.0 for injection (rHb2.0), with different rates of NO scavenging on vasoconstrictor reactivity and vascular permeability in isolated, saline-perfused rat lungs. We hypothesized that rHb1.1, a first-generation HBOC with an NO scavenging rate similar to that of native human hemoglobin, would exacerbate pulmonary vasoconstriction and permeability and that rHb2.0, a second-generation HBOC with an NO scavenging rate approximately 20- to 30-fold lower than that of rHb1.1, would minimally influence these responses. Consistent with this hypothesis, rHb1.1 enhanced pulmonary vasoconstrictor reactivity to both hypoxia and thromboxane mimetic U-46619 in a dose-dependent fashion. In contrast, rHb2.0 produced little or no change in reactivity to these stimuli. Furthermore, whereas rHb1.1 abrogated pulmonary vasodilation to the NO-donor S-nitroso-N-acetyl-penicillamine (SNAP), dose-dependent responses to SNAP were preserved, albeit attenuated, in lungs treated with rHb2.0. Finally, the capillary filtration coefficient was unaltered by either rHb1.1 or rHb2.0. We conclude that pulmonary hemodynamic responses to rHb2.0 are greatly reduced compared with those observed with rHb1.1, consistent with rHb2.0 having a diminished capacity to scavenge NO. In addition, neither hemoglobin solution measurably altered microvascular permeability in this preparation.  相似文献   

11.
Hemoglobin solutions are undergoing clinical trials as erythrocyte substitutes. Some of these solutions have higher O2 affinities compared with normal erythrocyte hemoglobin. Also, they appear to interact with endothelial-derived smooth muscle relaxation. The purpose of this study was to evaluate the nature and limits of compensation to acute normovolemic anemia in the erythrocyte-free primate maintained with a hemoglobin solution. The experimental group consisted of six anesthetized paralyzed adult baboons (Papio anubis) that were exchange transfused (ET) with a pyridoxylated polymerized hemoglobin solution [hemoglobin concentration [( Hb]) = 14 g/dl, O2 half-saturation pressure of hemoglobin (P50) = 19.6 Torr] until a hematocrit less than 1% was achieved. They underwent a second ET with Dextran-70 until [Hb] = 1 g/dl. A control group (n = 6) underwent an ET with Dextran-70 until [Hb] = 1 g/dl. Both groups maintained O2 consumption (VO2) until [Hb] = 3 g/dl. Both groups were stable until [Hb] less than 1 g/dl, and both groups increased their cardiac output. The relation between VO2 and O2 delivery was similar for both groups. In vivo P50 and mixed venous O2 tension were significantly lower in the experimental group. The nature and limits of compensation to diminished O2 delivery due to anemia were similar in the two groups.  相似文献   

12.
We evaluated whether acute anemia results in altered blood glucose utilization during sustained exercise at 26.8 m/min on 0% grade, which elicited approximately 60-70% maximal O2 consumption. Acute anemia was induced in female Sprague-Dawley rats by isovolumic plasma exchange transfusion. Hemoglobin and hematocrit were reduced 33% by exchange transfusion to 8.6 +/- 0.4 g/dl and 26.5 +/- 1%, respectively. Glucose kinetics were determined by primed continuous infusion of [6-3H]glucose. Rates of O2 consumption were similar during rest (pooled means 25.1 +/- 1.8 ml.kg-1.min-1) and exercise (pooled means 46.8 +/- 3.0 ml.kg-1.min-1). Resting blood glucose and lactate concentrations were not different in anemic animals (pooled means 5.1 +/- 0.2 and 0.9 +/- 0.02 mM, respectively). Exercise resulted in significantly decreased blood glucose (4.0 +/- 0.2 vs. 4.6 +/- 0.1 mM) and elevated lactate (6.1 +/- 0.4 vs. 2.3 +/- 0.5 mM) concentrations in anemic animals. Glucose turnover rates (Rt) were not different between anemic and control animals at rest and averaged 58.8 +/- 3.6 mumol.kg-1.min-1. Exercise resulted in a 30% greater increase in Rt in anemic (141.7 +/- 3.2 mumol.kg-1.min-1) than in control animals (111.2 +/- 5.2 mumol.kg-1.min-1). Metabolic clearance rates (MCR = Rt/[glucose]) were not different at rest (11.6 +/- 7.4) but were significantly greater in anemic (55.2 +/- 5.7 ml.kg-1.min-1) than in control animals (24.3 +/- 1.4 ml.kg-1.min-1) during exercise.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Tsai CH  Larson SC  Shen TJ  Ho NT  Fisher GW  Tam MF  Ho C 《Biochemistry》2001,40(40):12169-12177
A recombinant mutant of human fetal hemoglobin (Hb F), named rHb Oscar, has been constructed to explore the importance of the sequence of the amino-terminal region of the gamma-chain to the structural and functional properties of Hb F as compared to human normal adult hemoglobin (Hb A). Substitutions in the N-terminal region of Hb A have shown this region to be important to its structural and functional properties. Recent studies of recombinant mutants of Hb A with gamma-chain mutations have been used to probe the significance of the N-terminal sequence to the properties of Hb F. One of these mutants of Hb A, called rHb Felix, contains eight substitutions in the N-terminal region of the beta-chain corresponding to the sequence of the gamma-chain in that region [Dumoulin et al. (1998) J. Biol. Chem. 273, 35032-35038]. rHb Felix exhibits a 2,3-bisphosphoglycerate (2,3-BPG) response like that of Hb A, but its tetramer-dimer dissociation constant is similar to that of Hb F. In contrast, rHb Oscar contains a gamma-chain with eight mutations at the N-terminal end corresponding to the sequence of the beta-chain of Hb A in that region. (1)H NMR studies of rHb Oscar indicate a global structure like that of Hb F. rHb Oscar is not as stable against alkaline denaturation as Hb F but is more stable than Hb A, and it exhibits a stronger response to 2,3-BPG and inositol hexaphosphate as compared to Hb F. The 2,3-BPG effect in rHb Oscar also appears to be slightly enhanced compared to that in Hb A. Subzero isoelectric focusing experiments suggest that rHb Oscar does not have dissociation properties like those of Hb A. These results along with those of rHb Felix illustrate that the effects of the N-terminal region on structure and function of the Hb molecule are complicated by interactions with the rest of the molecule that are not yet well defined. However, studies of complementary mutations of Hb A and Hb F may eventually help to define such interactions and lead to a better understanding of the relationship between the amino acid sequence and the properties of the Hb molecule.  相似文献   

14.
Apohemoglobin (apoHb) is a dimeric globular protein with two vacant heme-binding pockets that can bind heme or other hydrophobic ligands. Purification of apoHb is based on partial hemoglobin (Hb) unfolding to facilitate heme extraction into an organic solvent. However, current production methods are time consuming, difficult to scale up, and use highly flammable and toxic solvents. In this study, a novel and scalable apoHb production method was developed using an acidified ethanol solution to extract the hydrophobic heme ligand into solution and tangential flow filtration to separate heme from the resultant apoprotein. Total protein and active protein yields were >95% and ~75%, respectively, with <1% residual heme in apoHb preparations and >99% purity from sodium dodecyl sulfate–polyacrylamide gel electrophoresis analysis. Virtually no loss of apoHb activity was detected at 4°C, −80°C, and in lyophilized form during long term storage. Structurally, size exclusion chromatography (SEC) and circular dichroism indicated that apoHb was dimeric with a ~25% reduction of helical content compared to Hb. Furthermore, mass spectroscopy and reverse-phase chromatography indicated that the mass of the α and β subunits were virtually identical to the theoretical mass of these subunits in Hb and had no detectable oxidative modifications upon heme removal from Hb. SEC confirmed that apoHb bound to haptoglobin at a similar ratio to that of native Hb. Finally, reconstituted Hb (rHb) was processed via a hemichrome removal method to isolate functional rHb for biophysical characterization in which the O2 equilibrium curve, O2 dissociation, and CO association kinetics of rHb were virtually identical to native Hb. Overall, this study describes a novel and improved method to produce apoHb, as well as presents a comprehensive biochemical analysis of apoHb and rHb.  相似文献   

15.
Orthophosphate (Pi) uptake was examined in human red blood cells at 37 degrees C in media containing physiological concentrations of Pi (1.0- 1.5 mM). Cells were shown to transport Pi by a 4,4'-dinitro stilbene- 2,2'-disulfonate (DNDS) -sensitive pathway (75%), a newly discovered sodium-phosphate (Na/Pi) cotransport pathway (20%), and a pathway linearly dependent on an extracellular phosphate concentration of up to 2.0 mM (5%). Kinetic evaluation of the Na/Pi cotransport pathway determined the K1/2 for activation by extracellular Pi ([Na]o = 140 mM) and extracellular Na [( Pi]o = 1.0 mM) to be 304 +/- 24 microM and 139 +/- 8 mM, respectively. The phosphate influx via the cotransport pathway exhibited a Vmax of 0.63 +/- 0.05 mmol Pi (kg Hb)-1(h)-1 at 140 mM Nao. Activation of Pi uptake by Nao gave Hill coefficients that came close to a value of 1.0. The Vmax of the Na/Pi cotransport varied threefold over the examined pH range (6.90-7.75); however, the Na/Pi stoichiometry of 1.73 +/- 0.15 was constant. The membrane transport inhibitors ouabain, bumetanide, and arsenate had no effect on the magnitude of the Na/Pi cotransport pathway. No difference was found between the rate of incorporation of extracellular Pi into cytosolic orthophosphate and the rate of incorporation into cytosolic nucleotide phosphates, but the rate of incorporation into other cytosolic organic phosphates was significantly slower. Depletion of intracellular total phosphorus inhibited the incorporation of extracellular Pi into the cytosolic nucleotide compartment; and this inhibition was not reversed by repletion of phosphorus to 75% of control levels. Extracellular 32Pi labeled the membrane-associated compounds that migrate on thin-layer chromatography (TLC) with the Rf values of ATP and ADP, but not those of 2,3-bisphosphoglycerate (2,3-DPG), AMP, or Pi. DNDS had no effect on the level of extracellular phosphate incorporation or on the TLC distribution of Pi in the membrane; however, substitution of extracellular sodium with N-methyl-D-glucamine inhibited phosphorylation of the membranes by 90% and markedly altered the chromatographic pattern of the membrane-associated phosphate.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

16.
S C Larson  G W Fisher  N T Ho  T J Shen  C Ho 《Biochemistry》1999,38(29):9549-9555
Three recombinant mutants of human fetal hemoglobin (Hb F) have been constructed to determine what effects specific amino acid residues in the gamma chain have on the biophysical and biochemical properties of the native protein molecule. Target residues in these recombinant fetal hemoglobins were replaced with the corresponding amino acids in the beta chain of human normal adult hemoglobin (Hb A). The recombinant mutants of Hb F included rHb F (gamma 112Thr --> Cys), rHb F (gamma 130Trp --> Tyr), and rHb F (gamma 112Thr --> Cys/gamma 130Trp --> Tyr). Specifically, the importance of gamma 112Thr and gamma 130Trp to the stability of Hb F against alkaline denaturation and in the interaction with sickle cell hemoglobin (Hb S) was investigated. Contrary to expectations, these rHbs were found to be as stable against alkaline denaturation as Hb F, suggesting that the amino acid residues mentioned above are not responsible for the stability of Hb F against the alkaline denaturation as compared to that of Hb A. Sub-zero isoelectric focusing (IEF) was employed to investigate the extent of hybrid formation in equilibrium mixtures of Hb S with these hemoglobins and with several other hemoglobins in the carbon monoxy form. Equimolar mixtures of Hb A and Hb S and of Hb A(2) and Hb S indicate that 48-49% of the Hb exists as the hybrid tetramer, which is in agreement with the expected binomial distribution. Similar mixtures of Hb F and Hb S contain only 44% hybrid tetramer. The results for two of our recombinant mutants of Hb F were identical to the results for mixtures of Hb F and Hb S, while the other mutant, rHb F (gamma 130Trp --> Tyr), produced 42% hybrid tetramer. The sub-zero IEF technique discussed here is more convenient than room-temperature IEF techniques, which require Hb mixtures in the deoxy state. These recombinant mutants of Hb F were further characterized by equilibrium oxygen binding studies, which indicated no significant differences from Hb F. While these mutants of Hb F did not have tetramer-dimer dissociation properties significantly altered from those of Hb F, future mutants of Hb F may yet prove useful to the development of a gene therapy for the treatment of patients with sickle cell anemia.  相似文献   

17.
Isovolemic hemodilution to 11% systemic hematocrit was performed in the hamster window chamber model using 6% dextran 70 kDa (Dx 70) and 5% human serum albumin (HSA). Systemic and microvascular effects of these solutions were compared with polyethylene glycol (PEG)-conjugated 5% albumin (MPA) and PEG-conjugated 4.2% Hb (MP4). These studies were performed for the purpose of comparing systemic and microvascular responses of PEG vs. non-PEG plasma expanders and similar oxygen-carrying vs. noncarrying blood replacement fluids. Mean arterial blood pressure was statistically significantly reduced for all groups compared with baseline (P < 0.05), HSA, MPA, and MP4 higher than Dx 70 (P < 0.05). MP4 and MPA had a significantly higher cardiac index than HSA and Dx 70, in addition to a positive base excess. Microvascular blood flow and capillary perfusion were significantly higher for the PEG compounds compared with HSA and Dx 70. Intravascular PO2 for MP4 and MPA was higher in arterioles (P < 0.05) compared with HSA and Dx 70, but there was no difference in either tissue or venular PO2 between groups. Total Hb in the MP4 group was 4.8 +/- 0.4 g/dl, whereas the remaining groups had a range of 3.6-3.8 g/dl. The hemodilution results showed that PEG compounds maintained microvascular conditions with lower concentrations than conventional plasma expanders. Furthermore, microvascular oxygen delivery and extraction in the window chamber tissue were significantly higher for the PEG compounds. MP4 was significantly higher than MPA (P < 0.05) and was not statistically different from baseline, an effect due to the additional oxygen release to the tissue by the Hb MP4.  相似文献   

18.
Accumulation of soluble recombinant hemoglobin (rHb1.1) in Escherichia coli requires proper protein folding, prosthetic group (heme) addition, and subunit assembly. This served as a new model system for the study of the effects of temperature, protein synthesis rates, and protein accumulation rates on protein solubility in E. coli. Fermentation expression of rHb1.1 at 30 degrees C from cultures containing a medium or high globin gene dosage (pBR-based or pUC-based plasmids with rHb1.1 genes under the control of the tac promoter) was compared. A medium gene dosage resulted in rHb1.1 accumulating to approximately 7% of the soluble cell protein, of which 78% was soluble. A high globin gene dosage resulted in a > or = 3-fold increase in total globin to 23 to 24% of the soluble cell protein, but 70% was insoluble. Accumulation of insoluble rHb1.1 began immediately upon induction. The proportion of rHb1.1 from the high globin gene dosage that accumulated as insoluble globin was affected by reducing (i) the inducer concentration and (ii) the temperature. Reducing the inducer concentration reduced globin synthesis up to eightfold but increased the proportion of soluble rHb1.1 to 93%. In contrast, total globin protein synthesis was barely affected by reducing the temperature from 30 to 26 degrees C, while soluble globin accumulation increased > 2-fold to approximately 15% of the soluble cell protein. The contrast between the effects of reducing rates of protein synthesis and accumulation and those of reducing temperature suggests that lower temperature stabilizes one or more folding intermediates. We propose a simplified physical model which integrates protein synthesis, folding, and heme association. This model shows that temperature-dependent apoglobin stability is the most critical factor in soluble rHb1.1 accumulation.  相似文献   

19.
Changes in the content of high-energy phosphates, intracellular pH (pHi) and the ratio of MgATP to total ATP ([MgATP]/[ATP]t) resulting from continuous stimulation with acetylcholine (10(-9) to 10(-4) M) were measured by 31P-NMR spectroscopy in the isolated, perfused rabbit mandibular gland at 37 degrees C. With 10(-9) to 10(-7) M acetylcholine, no significant changes in these parameters were observed. On stimulation with 10(-6) M acetylcholine, the optimal concentration for sustained secretion, the content of ATP decreased by 28 +/- 10% (mean +/- S.E.; n = 8) of its control value. pHi decreased initially by approx. 0.05 pH unit, then showed an alkalinization of 0.09 +/- 0.02 pH unit (n = 8). With 10(-5) and 10(-4) M acetylcholine, changes in ATP and pHi were similar to those induced by 10(-6) M acetylcholine: the total content of high-energy phosphates remained at approx. 70% of the control value and no decrease in [MgATP]/[ATP]t was observed. As possible causes of the reduced secretory rate observed with higher concentrations of acetylcholine (10(-5) to 10(-3) M), we can exclude depletion of high-energy phosphates, inhibition of metabolism caused by intracellular acidosis, and inhibition of ATP usage caused by a decrease in MgATP availability.  相似文献   

20.
The beneficial effect of hemodilution on cerebral blood flow (CBF) during focal cerebral ischemia is mitigated by reduced arterial oxygen content (CaO2). In anesthetized cats subjected to permanent middle cerebral artery occlusion, the time course of regional CBF was evaluated after isovolemic exchange transfusion with either albumin or a tetrameric hemoglobin-based oxygen carrier. The transfusion started 30 min after arterial occlusion. We tested the hypothesis that bulk oxygen transport (CBF x CaO2) to ischemic tissue is increased by hemoglobin transfusion at a hematocrit of 18% compared with albumin-transfused cats at a hematocrit of 18% or control cats at a hematocrit of 30% and equivalent arterial pressure. In the nonischemic hemisphere, CBF increased selectively after albumin transfusion, and oxygen transport was similar among groups. In the ischemic cortex, albumin transfusion increased CBF, but oxygen transport was not increased above that of the control group. Hemoglobin transfusion increased both CBF and oxygen transport in the ischemic cortex above values in the control group, but the increase was delayed until 4 h of ischemia. Consequently, acute injury volume measured at 6 h of ischemia was not significantly attenuated. In contrast to the cortex, CBF in the ischemic caudate nucleus was not substantially increased by either albumin or hemoglobin transfusion. Therefore, in a large animal model of permanent focal ischemia in which transfusion starts 30 min after ischemia, tetrameric cross-linked hemoglobin transfusion can augment oxygen transport to the ischemic cortex, but the increase can be delayed and not necessarily provide protection. Moreover, an end-artery region such as the caudate nucleus is less likely to benefit from hemodilution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号