首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Klostermeier D  Millar DP 《Biochemistry》2002,41(48):14095-14102
The hairpin ribozyme, a small catalytic RNA consisting of two helix-loop-helix motifs, serves as a paradigm for RNA folding. In the active conformer, the ribozyme is docked into a compact structure via loop-loop interactions. The crystal structure of the docked hairpin ribozyme shows an intricate network of hydrogen bonding interactions at the docking interface, mediated by the base, sugar, and phosphate groups of U42 and G+1 [Rupert, P. B., and Ferre-D'Amare, A. R. (2001) Nature 410, 780-786]. To elucidate the determinants for tertiary structure stability in the hairpin ribozyme, we evaluated the energetic contributions of hydrogen bonds surrounding U42 and G+1 by time-resolved fluorescence resonance energy transfer using modified ribozymes that lack one or more of the individual interactions. Elimination of a single tertiary hydrogen bond consistently resulted in a net destabilization of approximately 2 kJ/mol. The results of double- and triple-mutant cycles suggest that individual hydrogen bonds surrounding G+1 or U42 act cooperatively and form extended hydrogen bond networks that stabilize the docked ribozyme. These results demonstrate that RNAs, similar to proteins, can exploit coupled hydrogen bond networks to stabilize the docking of distant structural domains.  相似文献   

2.
A variety of autoantibodies is responsible for the tissue injury in autoimmune diseases. We have demonstrated that the human anti-DNA Ab O-81, of which Ids are commonly detected in renal glomeruli of active lupus nephritis, uses the V3-7 gene. We tried to develop a new therapy for lupus nephritis by using chemically modified ribozymes to specifically inhibit the expression of the mRNA of Ig V gene. The transfection of hammerhead ribozyme or the addition of chemically modified ribozyme against the flanking region of V3-7 caused a potent and selective inhibition of anti-DNA production in V3-7-using B cell clones, but not in irrelevant V gene-using clones in vitro. Chemically modified ribozyme was long-acting and resistant to RNase, and nonspecific cytotoxicity of the ribozyme was negligible. To know the efficacy of the ribozyme in vivo, we used a model of immune complex nephritis in SCID mice in which 5 x 10(6) PBLs from patients with active lupus nephritis (lupus PBL) were transferred twice. The injection of lupus PBL in combination with chemically modified ribozyme to increase resistance to RNase significantly reduced anti-DNA Ab levels in blood and decreased levels of urinary protein in the immune deposit models. Immunofluorescence study also revealed a marked decrease in IgG deposits at renal glomeruli in the ribozyme-treated group. These results indicate an efficacy of chemically modified ribozyme therapy for autoantibody-mediated immune diseases.  相似文献   

3.
Four fluoro modified universal nucleobases have been synthesized. The universal nucleobases 1 and 2, containing a 2,4-difluorobenzene as nucleobase and a 4,6-difluorobenzimidazole, respectively, were chemically incorporated into a selected hammerhead ribozyme sequence which has already been retrovirally expressed as an anti-HIV ribozyme to investigate their effect on the catalytic activity of the ribozymes. The substitution of the natural nucleosides with either 1 or 2 results only in a small decrease of the catalytic activity. The Km value for the monosubstituted ribozyme with a 2,4-difluorobenzene is 309 nM(-1), the corresponding kcat is 2.91 x 10(-3) min(-1). A disubstituted hammerhead ribozyme carrying one of each modification has also been synthesized. For a further stabilization of the ribozyme/substrate complex 2'-(beta-aminoethoxy) modified fluorinated nucleosides 15 and 16 have been developed.  相似文献   

4.
Abstract

The phosphodiester bond between U4 and G5 in the U-turn of a chemically modified hammerhead ribozyme was substituted by an amide backbone without compromising the ribozyme's cleavage activity. Furthermore, the modified ribozyme proved to be completely stable against endonucleolytic digestion at this position.  相似文献   

5.
Recently we have demonstrated that hammerhead ribozymes can be fully substituted with 2'-amino pyrimidines without detriment to the catalytic activity, provided that positions 2.2 and/or 2.1 are not modified. We now report on the potential molecular mechanisms by which 2'-amino groups at these positions inhibit the ribozyme cleavage activity. In the presence of Mg(2+), the 2'-amino modification at positions 2.2 and/or 2.1 had no significant effect on substrate binding. Detailed analysis of the ribozyme initial cleavage rates in the presence of various Mg(2+) concentrations indicated that Mg(2+) binding is inhibited by the 2'-amino group at position 2.1. Furthermore, preannealed substrate molecules to the modified ribozyme are not effectively cleaved upon Mg(2+) addition, indicating an alteration of the ribozyme cleavage step. Surprisingly, the cleavage activity of the modified ribozymes was substantially increased when Mg(2+) ions were replaced by the thiophilic Mn(2+) ions, whereas only a moderate cleavage enhancement occurred with its unmodified version. Taken together, our findings indicate that changes in the sugar at position 2.1 alter Mg(2+)-promoting ribozyme cleavage.  相似文献   

6.
Stable RNAs must fold into specific three-dimensional structures to be biologically active, yet many RNAs form metastable structures that compete with the native state. Our previous time-resolved footprinting experiments showed that Azoarcus group I ribozyme forms its tertiary structure rapidly (τ < 30 ms) without becoming significantly trapped in kinetic intermediates. Here, we use stopped-flow fluorescence spectroscopy to probe the global folding kinetics of a ribozyme containing 2-aminopurine in the loop of P9. The modified ribozyme was catalytically active and exhibited two equilibrium folding transitions centered at 0.3 and 1.6 mM Mg2+, consistent with previous results. Stopped-flow fluorescence revealed four kinetic folding transitions with observed rate constants of 100, 34, 1, and 0.1 s− 1 at 37 °C. From comparison with time-resolved Fe(II)-ethylenediaminetetraacetic acid footprinting of the modified ribozyme under the same conditions, these folding transitions were assigned to formation of the IC intermediate, tertiary folding and docking of the nicked P9 tetraloop, reorganization of the P3 pseudoknot, and refolding of nonnative conformers, respectively. The footprinting results show that 50-60% of the modified ribozyme folds in less than 30 ms, while the rest of the RNA population undergoes slow structural rearrangements that control the global folding rate. The results show how small perturbations to the structure of the RNA, such as a nick in P9, populate kinetic folding intermediates that are not observed in the natural ribozyme.  相似文献   

7.
The hairpin ribozyme is a small self-cleaving RNA that can be engineered for RNA cleavage in trans and has potential as a therapeutic agent. We have used a chemical synthesis approach to study the requirements of hairpin RNA cleavage for sugar and base moieties in residues of internal loop B, an essential region in one of the two ribozyme domains. Individual nucleosides were substituted by either a 2'-deoxy-nucleoside, an abasic residue, or a C3-spacer (propyl linker) and the abilities of the modified ribozymes to cleave an RNA substrate were studied in comparison with the wild-type ribozyme. From these results, together with previous studies, we propose a new model for the potential secondary structure of internal loop B of the hairpin ribozyme.  相似文献   

8.
The crystal structure of a genomic hepatitis delta virus (HDV) ribozyme 3' cleavage product predicts the existence of a 2 bp duplex, P1.1, that had not been previously identified in the HDV ribozymes. P1.1 consists of two canonical C-G base pairs stacked beneath the G.U wobble pair at the cleavage site and would appear to pull together critical structural elements of the ribozyme. P1.1 is the second stem of a second pseudoknot in the ribozyme, making the overall fold of the ribozyme a nested double pseudoknot. Sequence comparison suggests the potential for P1.1 and a similar fold in the antigenomic ribozyme. In this study, the base pairing requirements of P1.1 for cleavage activity were tested in both the genomic and antigenomic HDV ribozymes by mutagenesis. In both sequences, cleavage activity was severely reduced when mismatches were introduced into P1.1, but restored when alternative base pairing combinations were incorporated. Thus, P1.1 is an essential structural element required for cleavage of both the genomic and antigenomic HDV ribozymes and the model for the antigenomic ribozyme secondary structure should also be modified to include P1.1.  相似文献   

9.
A circular trans-acting hepatitis delta virus ribozyme.   总被引:8,自引:3,他引:5       下载免费PDF全文
A circular trans-acting ribozyme designed to adopt the motif of the hepatitis delta virus (HDV) trans-acting ribozyme was produced. The circular form was generated in vitro by splicing a modified group I intron precursor RNA in which the relative order of the 5' and 3' splice sites, flanking the single HDV-like ribozyme sequence-containing exon, is reversed. Trans-cleavage activity of the circular HDV-like ribozyme was comparable to linear permutations of HDV ribozymes containing the same core sequence, and was shown not to be due to linear contaminants in the circular ribozyme preparation. In nuclear and cytoplasmic extracts from HeLa cells, the circular ribozyme had enhanced resistance to nuclease degradation relative to a linear form of the ribozyme, suggesting that circularization may be a viable alternative to chemical modification as a means of stabilizing ribozymes against nuclease degradation.  相似文献   

10.
The hairpin ribozyme is an example of a small catalytic RNA that catalyses the endonucleolytic transesterification of RNA in a highly sequence-specific manner. We have utilised chemical synthesis of RNA to create mutants of the hairpin ribozyme in which a nucleoside analogue replaces one of the essential pyrimidines in the ribozyme. Individual pyrimidine nucleosides were substituted by 4-thiouridine, O4-methyluridine, O2-methyluridine or 2-pyrimidinone-1-beta-d-riboside. To facilitate the synthesis of oligoribonucleotides containing 4-thiouridine, we have devised a new synthetic route to the key intermediate 5'-O-(4, 4'-dimethoxytrityl)-2'-O-tert-butyldimethylsilyl-S-cyanoethyl-4-thiou ridine. The ability of the modified ribozymes to support catalysis was studied and the steady-state kinetic parameters were determined for each mutant. The range of analogues used in this study allows the important functional groups of the essential pyrimidines to be identified. The results demonstrate that each pyrimidine (U41, U42 and C25) plays an important role in hairpin ribozyme catalysis. The findings are discussed in terms of the various models that have been proposed for loop B of the hairpin ribozyme.  相似文献   

11.
A guanine (G638) within the substrate loop of the VS ribozyme plays a critical role in the cleavage reaction. Replacement by any other nucleotide results in severe impairment of cleavage, yet folding of the substrate is not perturbed, and the variant substrates bind the ribozyme with similar affinity, acting as competitive inhibitors. Functional group substitution shows that the imino proton on the N1 is critical, suggesting a possible role in general acid-base catalysis, and this in accord with the pH dependence of the reaction rate for the natural and modified substrates. We propose a chemical mechanism for the ribozyme that involves general acid-base catalysis by the combination of the nucleobases of guanine 638 and adenine 756. This is closely similar to the probable mechanism of the hairpin ribozyme, and the active site arrangements for the two ribozymes appear topologically equivalent. This has probably arisen by convergent evolution.  相似文献   

12.
A new type of hammerhead ribozyme, with cleavage activity enhanced by oligonucleotides, was constructed. Stem II of the ribozyme was substituted with a non complementary loop (loop II). The modified ribozyme exhibited negligible cleavage of a target RNA; however, it was converted to an active molecule in the presence of oligonucleotides which were complementary to loop II. The oligonucleotide compensated for the disabled stem II by binding with the ribozyme. The induction of the cleavage activity was sequence-specific and the oligonucleotides containing a purine base as the 3'-dangling end were able to induce the cleavage activity of the ribozyme most efficiently. A photo-crosslinking experiment proved that a pseudo-half-knot structure was formed in the active molecule. The cleavage of two kinds of substrate RNAs with different sequences was controlled by the corresponding ribozymes activated by specific oligonucleotides.  相似文献   

13.
A novel chemo-genetic approach for the analysis of general acid-base catalysis by nucleobases in ribozymes is reviewed. This involves substitution of a C-nucleoside with imidazole in place of a natural nucleobase. The Varkud satellite ribozyme in which the nucleobase at the critical 756 position has been replaced by imidazole is active in both cleavage and ligation reactions. Similarly, a modified hairpin ribozyme with the nucleobase at position 8 substituted by imidazole is active in cleavage and ligation reactions. Although the rates are lower than those of the natural ribozymes, they are significantly greater than other variants at these positions. The dependence of the hairpin ribozyme reaction rates on pH has been studied. Both cleavage and ligation reactions display a bell-shaped pH dependence, consistent with general acid-base catalysis involving the nucleotide at position 8.  相似文献   

14.
A self-cleaving RNA sequence from hepatitis delta virus was modified to produce a ribozyme capable of catalyzing the cleavage of RNA in an intermolecular (trans) reaction. The delta-derived ribozyme cleaved substrate RNA at a specific site, and the sequence specificity could be altered with mutations in the region of the ribozyme proposed to base pair with the substrate. A substrate target size of approximately 8 nucleotides in length was identified. Octanucleotides containing a single ribonucleotide immediately 5' to the cleavage site were substrates for cleavage, and cleavage activity was significantly reduced only with a guanine base at that position. A deoxyribose 5' to the cleavage site blocked the reaction. These data are consistent with a proposed secondary structure for the self-cleaving form of the hepatitis delta virus ribozyme in which a duplex forms with sequences 3' to the cleavage site, and they support a proposed mechanism in which cleavage involves attack on the phosphorus at the cleavage site by the adjacent 2'-hydroxyl group.  相似文献   

15.
16.
Weinberg MS  Rossi JJ 《FEBS letters》2005,579(7):1619-1624
trans-Cleaving hammerhead ribozyme variants were generated with mimicked non-conserved internal loop motifs derived from five structurally diverse natural cis-cleaving ribozymes. Most modified trans-cleaving variants showed enhanced single-turnover cleavage rates relative to minimal counterparts that lack tertiary interactions between internal loop motifs I and II, and relative to controls with sequence changes in loop I. The trans-cleaving ribozyme derived from the positive strand of peach latent mosaic viroid had the highest observed cleavage rate, suggesting a structurally optimized motif that facilitates rapid formation of the ribozyme catalytic center in a trans-reaction.  相似文献   

17.
The VS ribozyme trans-cleavage substrate interacts with the catalytic RNA via tertiary interactions. To study the role of phosphate groups in the ribozyme–substrate interaction, 18 modified substrates were synthesized, where an epimeric phosphorothioate replaces one of the phosphate diester linkages. Sites in the stem–loop substrate where phosphorothioate substitution impaired reaction cluster in two regions. The first site is the scissile phosphate diester linkage and nucleotides downstream of this and the second site is within the loop region. The addition of manganese ions caused recovery of the rate of reaction for phosphorothioate substitutions between A621 and A622 and U631 and C632, suggesting that these two phosphate groups may serve as ligands for two metal ions. In contrast, significant manganese rescue was not observed for the scissile phosphate diester linkage implying that electrophilic catalysis by metal ions is unlikely to contribute to VS ribozyme catalysis. In addition, an increase in the reaction rate of the unmodified VS ribozyme was observed when a mixture of magnesium and manganese ions acted as the cofactor. One possible explanation for this effect is that the cleavage reaction of the VS ribozyme is rate limited by a metal dependent docking of the substrate on the ribozyme.  相似文献   

18.
19.
Kim KS  Choi WH  Choi BR  Oh S  Yea SS  Yoon MY  Kim DE 《FEBS letters》2007,581(21):4065-4072
Self-replication process of the RNA ligase ribozyme molecules was investigated by using the modified RNA ligase ribozyme under alternating temperature condition that enhances turnover rate of the RNA ligation reaction. In our experiment, the RNA ligase ribozyme system mainly undergoes a cross-catalytic replication process, in which two ribozymes catalyze each other's synthesis from a total of four RNA substrates under alternating temperature condition, resulting in time-dependent accumulation of additional copies of the starting ribozymes in a reaction mixture. The present study demonstrates that cross-catalytic replication in nucleic acids system can be efficiently devised under the alternating temperature condition.  相似文献   

20.
The self-cleaving hepatitis delta virus (HDV) ribozyme is essential for the replication of HDV, a liver disease causing pathogen in humans. The catalytically critical nucleotide C75 of the ribozyme is buttressed by a trefoil turn pivoting around an extruded G76. In all available crystal structures, the conformation of G76 is restricted by stacking with G76 of a neighboring molecule. To test whether this crystal contact introduces a structural perturbation into the catalytic core, we have analyzed approximately 200 ns of molecular dynamics (MD) simulations. In the absence of crystal packing, the simulated G76 fluctuates between several conformations, including one wherein G76 establishes a perpendicular base quadruplet in the major groove of the adjacent P1 stem. Second-site mutagenesis experiments suggest that the identity of the nucleotide in position 76 (N76) indeed contributes to the catalytic activity of a trans-acting HDV ribozyme through its capacity for hydrogen bonding with P1. By contrast, in the cis-cleaving genomic ribozyme the functional relevance of N76 is less pronounced and not correlated with the P1 sequence. Terbium(III) footprinting and additional MD show that the activity differences between N76 mutants of this ribozyme are related instead to changes in average conformation and modified cross-correlations in the trefoil turn.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号