首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

The hydrolytic reactions of the dimethyl ester of 3′-deoxy-3′-thioinosine 3′-S-phosphorothiolate have been followed over a wide aciditty range by HPLC. At pH > 3, only hydroxide ion catalyzed isomerization to the 2′-dimethylphosphate takes place, whereas under more acidic conditions hydrolysis to the 2′-monomethylphosphate and 3′-S-monomethylphosphorothiolate competes. The latter is the only product accumulating in very acidic solutions (1 M hydrochloric acid). Mechanisms of the reactions are discussed.  相似文献   

2.
3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) lyase catalyzes the divalent cation-dependent cleavage of HMG-CoA to form acetyl-CoA and acetoacetate. In metal-dependent aldol and Claisen reactions, acidic residues often function either as cation ligands or as participants in general acid/base catalysis. Site-directed mutagenesis was used to produce conservative substitutions for the conserved acidic residues Glu-37, Asp-42, Glu-72, Asp-204, Glu-279, and Asp-280. HMG-CoA lyase deficiency results from a human mutation that substitutes lysine for glutamate 279. The E279K mutation has also been engineered; expression in Escherichia coli produces an unstable protein. Substitution of alanine for glutamate 279 produces a protein that is sufficiently stable for isolation and retains substantial catalytic activity. However, thermal inactivation experiments demonstrate that E279A is much less stable than wild-type enzyme. HMG-CoA lyase deficiency also results from mutations at aspartate 42. Substitutions that eliminate a carboxyl group at residue 42 perturb cation binding and substantially lower catalytic efficiency (104-105-fold decreases in specific activity for D42A, D42G, or D42H versus wild-type). Substitutions of alanine for the other conserved acidic residues indicate the importance of glutamate 72. E72A exhibits a 200-fold decrease in kcat and >103-fold decrease in kcat/Km. E72A is also characterized by inflation in the Km for activator cation (26-fold for Mg2+; >200-fold for Mn2+). Similar, but less pronounced, effects are measured for the D204A mutant. E72A and D204A mutant proteins both bind stoichiometric amounts of Mn2+, but D204A exhibits only a 2-fold inflation in KD for Mn2+, whereas E72A exhibits a 12-fold inflation in KD (23 microm) in comparison with wild-type enzyme (KD = 1.9 microm). Acidic residues corresponding to HMG-CoA lyase Asp-42 and Glu-72 are conserved in the HMG-CoA lyase protein family, which includes proteins that utilize acetyl-CoA in aldol condensations. These related reactions may require an activator cation that binds to the corresponding acidic residues in this protein family.  相似文献   

3.
We report that WAVE1/Scar1, a WASP-family protein that functions downstream of Rac in membrane ruffling, can induce part of the reorganization of the actin cytoskeleton without Arp2/3 complex. WAVE1 has been reported to associate and activate Arp2/3 complex at its C-terminal region that is rich in acidic residues. The deletion of the acidic residues abolished the interaction with and the activation ability of Arp2/3 complex. The expression of the mutant WAVE1 lacking the acidic residues (DeltaA), however, induced actin-clustering in cells as the wild-type WAVE1 did. In addition, this actin-clustering could not be suppressed by the coexpression of the Arp2/3 complex-sequestering fragment (CA-region) derived from N-WASP, which clearly inhibits Rac-induced membrane ruffling. This study therefore demonstrates that WAVE1 reorganizes the actin cytoskeleton not only through Arp2/3 complex but also through another unidentified mechanism that may be important but has been neglected thus far.  相似文献   

4.
Gas-phase ab initio calculations indicate that dianionic pentacoordinate oxyphosphoranes do not have a kinetically meaningful intermediate. The simplest oxyphosphorane PO5H3(2-) has the least tendency to have a pentacoordinate intermediate. However, it does have a pentacoordinate intermediate when it is solvated with six water molecules. These results support the hypothesis that the phosphoryl transfer reactions take place via pentacoordinate intermediate not only in acidic but also in basic media.  相似文献   

5.
Hyaluronate degradation in 3T3 and simian virus-transformed 3T3 cells   总被引:4,自引:0,他引:4  
The cellular control of hyaluronate levels was examined in cultures of simian virus 40-transformed 3T3 (SV3T3) and 3T3 cells which are known to differ in their metabolism of hyaluronate. When [3H]hyaluronate was added to cultures of the two cell lines, four times more ligand was bound per mg of protein by the SV3T3 cells than by the 3T3 cells. Of the bound [3H] hyaluronate, 40% was degraded by the SV3T3 cells to oligosaccharides characteristic of the breakdown of hyaluronate, but only 2% was degraded by 3T3 cells. Hyaluronidase activity was found in the cell layer and medium of the SV3T3 cultures, but was not detectable in 3T3 cells. The SV3T3 enzyme was active only at acidic pH, but at neutral pH the secreted SV3T3 hyaluronidase was thermally more stable then the cell-associated enzyme. In contrast, both cell lines were found to contain similar amounts of beta-glucuronidase and beta-N-acetylglucosaminidase activity. We conclude that the elevated capacity of SV3T3 cells to degrade hyaluronate may be partially responsible for their lack of the hyaluronate-containing pericellular coat which is prominent around 3T3 cells.  相似文献   

6.
We have determined the amino acid sequence of the N alpha-terminal portion of band 3, the anion transport protein of the human erythrocyte membrane. The material analyzed was a 201-residue, 23,053-Da fragment cleaved from the cytoplasmic end of band 3 by S-cyanylation. The sequence had these notable features. 1) The N alpha-terminal region was extraordinarily acidic, second only to a segment of similar size from the sigma factor of Escherichia coli RNA polymerase. The first 33 residues contained 6 aspartic acid and 12 glutamic acid residues, no basic residue, and a blocked N alpha-amino group. 2) The first 11 residues of the protein had a striking resemblance to the following 11 residues. 3) In contrast to the acidic N alpha-terminal third, the COOH-terminal two-thirds of the 23,053-Da fragment had a predominantly basic character. The highly acidic character of the N alpha-terminal portion of band 3 accounts for the capacity of this part of the protein to bind glycolytic enzymes in a highly electrostatic fashion, presumably through interaction with their cationic substrate-binding sites.  相似文献   

7.
W Meyer  A Tsukise 《Acta anatomica》1989,136(3):226-234
The distribution of glycoconjugates in the muzzle of young adult Holstein cows has been studied by means of selected light-microscopic histochemical methods, including lectin histochemistry. In the skin layers, strong reactions were confined to intercellular substances in between the cells of the vital epidermis, exhibiting neutral glycoconjugates mainly with alpha-D-galactosyl and N-acetyl-D-galactosaminyl residues. In the nasolabial glands, distinctly positive staining for neutral glycoproteins with various saccharide residues (alpha-D-galactose, alpha-N-acetylgalactosamine, D-galactose-beta(1----3)D-N-acetylgalactosamine, beta-D-galactose), and for smaller amounts of acidic glycoconjugates, was found in the secretory cells and the luminal secretion. The cells of the excretory duct system showed weak to moderate reactions (alpha-D-galactose, beta-D-galactose), only the collecting ducts reacted positively for acidic glycoproteins with sialyl residues. The results obtained are discussed in view of muzzle function, with special reference to the salivary nature of the secretion of bovine nasolabial glands.  相似文献   

8.
The nature of the products of the auxin catabolism mediated by both basic and acidic isoperoxidases has been studied. While indole-3-methanol is only a minor product of the oxidation of indole-3-acetic acid catalyzed by extracellular acidic isoperoxidases, it is the only product of the oxidation of indole-3-acetic acid catalyzed by two cytosolic basic isoperoxidases (EC 1.11.1.7) from lupin (Lupinus albus L.) hypocotyls. The putative indole-3-methanol formed by these latter isoperoxidases was isolated and then characterized by mass spectrometry and 1H-nuclear magnetic resonance spectrometry. These results are discussed with respect to the diversity and compartmentation of the catabolism of indole-3-acetic acid in plant tissues.Abbreviations DCP 2,4-dichlorophenol - IAA indole-3-acetic acid - IM indole-3-methanol  相似文献   

9.
The synthesis of new fluorescent nucleotides is described. This synthesis comprises two parallel reactions, the Kornblum oxidation and imidazole formation, which lead to 8-(aryl)-3-beta-D-ribofuranosylimidazo[2,1-i]purine 5'-phosphates 2 from AMP or ATP. A detailed mechanism is proposed based on monitoring the reaction by 1H- and 13C-NMR spectroscopy, MS, FAB, HPLC, and pH meter. The spectral and fluorescent properties of the new derivatives at various pH values are described. Excitation and emission maxima for 3 were observed at 290 and 420 nm, respectively, in both basic and neutral media. In acidic media, the emission maximum shifted to 410 nm, however, the fluorescence intensity increased 1.5-fold. ATP analogues 2b and 3b exhibited relative stability regarding hydrolysis by type II ATPDase. Compound 3b is relatively chemically stable at pH 10.4 and 7.4.  相似文献   

10.
Chen J  Zhou X  Zhang Y  Qian Y  Gao H 《Amino acids》2012,43(4):1419-1429
Acidic pharmaceuticals such as diclofenac (DCF), clofibric acid (CA) and ketoprofen (KTP) have been detected frequently in environmental media. In order to reveal the toxicity of such emerging pollutants, their interactions with human serum albumin (HSA) were investigated by capillary electrophoresis, molecular spectrometry, and equilibrium dialysis. The binding constants and sites of these acidic pharmaceuticals with HSA were obtained. The thermodynamic parameters, e.g. enthalpy change and entropy change of these interactions were calculated to characterize that all the reactions resulted from hydrophobic and electrostatic interactions. The static quenching of the fluorescence of HSA was observed when interacted with acidic pharmaceuticals, indicating acidic pharmaceuticals bound to Tryptophan residue of HSA. The 3D fluorescence and circular dichroism confirmed that the secondary conformation of HSA changed after the interactions with the pharmaceuticals. At physiological condition, only 0.12?mM acidic pharmaceuticals reduced the binding of vitamin B(2) to HSA by 37, 30 and 21% for DCF, KTP and CA, respectively. This work provides an insight into non-covalent interactions between emerging contaminants and biomolecule, and is helpful for clarifying the toxic mechanism of such emerging contaminants.  相似文献   

11.
Two kinds of 3-nitro-2-pyridyl glycosides were synthesized and evaluated as substrates for continuous spectrophotometric assay for glycosidases. The liberated aglycon, 2-hydroxy-3-nitropyridine, immediately tautomerized to 3-nitro-2(1H)-pyridone, causing an absorption shift of ca. 60 nm even under acidic conditions (pH 3-6). Consequently, the enzymatic hydrolysis of these glycosides was monitored continuously in the acidic to neutral pH range (pH 4-7), the optimum pH for most glycosidases. The absorbance of liberated aglycon increased linearly at 390 nm until 10% consumption of the substrate to enable the initial rate to be determined at once without terminating the reaction. The kinetic parameters for the hydrolysis of 3-nitro-2-pyridyl glycosides were obtained from the slopes of the progress curves and were compared with those obtained from the conventional discontinuous assay using p- and o-nitrophenyl glycosides as substrates. The kinetic parameters indicated that 3-nitro-2-pyridyl glycosides were more activated and specific substrates, but with less affinity to the enzymes than the corresponding nitrophenyl glycosides. Moreover, the absorbance shift by tautomerization should promise further applications to continuous spectrophotometric assays for other enzymes acting under acidic conditions, such as acid proteases and acid phosphatases.  相似文献   

12.
Enantiomeric and racemic oxazepam (OX), 3-O-methyloxazepam (MeOX), and 3-O-ethyloxazepam (EtOX) were used to study racemization, heteronucleophilic, and homonucleophilic substitution reactions in anhydrous acidic methanol and ethanol. Kinetics of racemization and nucleophilic substitution reactions in nondeuterated and deuterated solvents were determined by circular dichroism spectropolarimetry, chiral stationary phase high-performance liquid chromatography (HPLC), reversed-phase HPLC, and mass spectrometry. Several reactions occurred when (S)-OX, for example, was dissolved in acidic methanol: (1) (S)-OX itself underwent spontaneous racemization, (2) the 3-hydroxyl group of (S)-OX was stereoselectively substituted by the methoxy group of methanol to form MeOX enriched in (S)-MeOX, (3) the 3-methoxy group of (S)-MeOX was stereoselectively substituted by the methoxy group of methanol to form MeOX enriched in (S)-MeOX, and (4) the 3-methoxy group of (R)-MeOX was stereoselectively substituted by the methoxy group of methanol to form MeOX enriched in (R)-MeOX. Repetitive reactions 3 and 4 eventually resulted in a racemic MeOX. Similar reactions occurred for an enantiomeric OX in acidic ethanol. © 1996 Wiley-Liss, Inc.
  • 1 This article is a US Government work and, as such, is in the public domain in the United States of America.
  •   相似文献   

    13.
    D I Stom  S N Suslov 《Biofizika》1976,21(1):40-43
    Polarographic behaviour of a number of substituted ortho-benzenquinones was studied in weakly acidic, neutral and weakly caustic solutions (up to pH --9.0). Half-wave potential depends on the solution pH, indicating protonization of the carbonyl groups of the quinones. Protonization is probably stipulated by the hydroxonium ions. Protonization may take place not only under the action of water, but also under the effect of other acidic components, as indicated by the dependence of E1/2 on the undissociated acetic acid centrifugation. The condensation and polymerization reactions are characteristic for the ortho-quinones. A shift of the quinone potential indicates dimerization of the electrode products.  相似文献   

    14.
    Neural Wiskott-Aldrich syndrome protein (N-WASP) is an essential regulator of actin cytoskeleton formation via its association with the actin-related protein (Arp) 2/3 complex. It is believed that the C-terminal Arp2/3 complex-activating domain (verprolin homology, cofilin homology, and acidic (VCA) or C-terminal region of WASP family proteins domain) of N-WASP is usually kept masked (autoinhibition) but is opened upon cooperative binding of upstream regulators such as Cdc42 and phosphatidylinositol 4,5-bisphosphate (PIP2). However, the mechanisms of autoinhibition and association with Arp2/3 complex are still unclear. We focused on the acidic region of N-WASP because it is thought to interact with Arp2/3 complex and may be involved in autoinhibition. Partial deletion of acidic residues from the VCA portion alone greatly reduced actin polymerization activity, demonstrating that the acidic region contributes to Arp2/3 complex-mediated actin polymerization. Surprisingly, the same partial deletion of the acidic region in full-length N-WASP led to constitutive activity comparable with the activity seen with the VCA portion. Therefore, the acidic region in full-length N-WASP plays an indispensable role in the formation of the autoinhibited structure. This mutant contains WASP-homology (WH) 1 domain with weak affinity to the Arp2/3 complex, leading to activity in the absence of part of the acidic region. Furthermore, the actin comet formed by the DeltaWH1 mutant of N-WASP was much smaller than that of wild-type N-WASP. Partial deletion of acidic residues did not affect actin comet size, indicating the importance of the WH1 domain in actin structure formation. Collectively, the acidic region of N-WASP plays an essential role in Arp2/3 complex activation as well as in the formation of the autoinhibited structure, whereas the WH1 domain complements the activation of the Arp2/3 complex achieved through the VCA portion.  相似文献   

    15.
    16.
    Methyl 2,4-di-O-acetyl-3-deoxy-3-fluoro-β- -galactopyranoside was synthesized by sequential tritylation, acetylation, and detritylation of methyl 3-deoxy-3-fluoro-β- -galactopyranoside, and used as the initial nucleophile in the synthesis of methyl β-glycosides of (1→6)-β- -galacto-biose, -triose (20), and -tetraose (22) having a 3-deoxy-3-fluoro-β- -galactopyranoside end-residue. The extension of the oligosaccharide chais, to form the internal units in 20 and 22, was achieved by use of 2,3,4-tri-O-acetyl-6-O-bromoacetyl-α- -galactopyranosyl bromide as a glycosyl donor, and mercuric cyanide or silver triflate as the promotor. While fewer by-products were formed in the reactions involving mercuric cyanide, the reactions catalyzed by silver triflate were stereospecific and yielded only the desired β (trans) products.  相似文献   

    17.
    Studies involving Toll-like receptor 3 (TLR3)-deficient mice suggest that this receptor binds double-stranded RNA. In the present study, we analyzed ligand/receptor interactions and receptor-proximal events leading to TLR3 activation. The mutagenesis approach showed that certain cysteine residues and glycosylation in TLR3 amino-terminal leucine-rich repeats were necessary for ligand-induced signaling. Furthermore, inactive mutants had a dominant negative effect, suggesting that the signaling module is a multimer. We constructed a chimeric molecule fusing the amino-terminal ectodomain of TLR3 to the transmembrane and carboxyl terminal domains of CD32a containing an immunoreceptor tyrosine-based motif. Expression of TLR3-CD32 in HEK293T cells and the myeloid cell line U937 resulted in surface localization of the receptor, whereas the nonrecombinant molecule was intracellularly localized. The synthetic double-stranded RNAs poly(I-C) and poly(A-U) induced calcium mobilization in a TLR3-CD32 stably transfected U937 clone but not in control cells transfected with other constructs. An anti-TLR3 antibody also induced Ca(2+) flux but only when cross-linked by a secondary anti-immunoglobulin antibody, confirming that multimerization by the ligand is a requirement for signaling. The inhibitors of lysosome maturation, bafilomycin and chloroquine, inhibited the poly(I-C)-induced biological response in immune cells, showing that TLR3 interacted with its ligand in acidic subcellular compartments. Furthermore, TLR3-CD32 activation with poly(I-C) was only observed within a narrow pH window (pH 5.7-6.7), whereas anti-TLR3-mediated Ca(2+) flux was pH-insensitive. The importance of an acidic pH for TLR3-ligand interaction becomes critical when using oligomeric poly(I-C) (15-40-mers). These observations demonstrate that engagement of TLR3 by poly(I-C) at an acidic pH, probably in early phagolysosomes or endosomes, induces receptor aggregation leading to signaling.  相似文献   

    18.
    Mitogenic concentrations of recombinant acidic or basic fibroblast growth factor (FGF) stimulated the accumulation of [3H]inositol phosphates ([3H]IPs) in Swiss 3T3 cells pre-labelled for 48 h with [3H]inositol. Maximal effects were obtained at 0.3 ng/ml and 3 ng/ml for basic and acidic FGF, respectively. Higher doses of either factor led to a diminished stimulation. FGF also stimulated 45Ca2+ release from cells pre-labelled with the isotope. However, FGF-stimulated production of [3H]IPs and release of 45Ca2+ exhibited marked differences when compared with the responses to the peptide mitogen bombesin; the FGF responses were markedly slower and were not inhibited by phorbol esters.  相似文献   

    19.
    A Ras-GTPase-activating protein SH3-domain-binding protein.   总被引:12,自引:3,他引:9       下载免费PDF全文
    We report the purification of a Ras-GTPase-activating protein (GAP)-binding protein, G3BP, a ubiquitously expressed cytosolic 68-kDa protein that coimmunoprecipitates with GAP. G3BP physically associates with the SH3 domain of GAP, which previously had been shown to be essential for Ras signaling. The G3BP cDNA revealed that G3BP is a novel 466-amino-acid protein that shares several features with heterogeneous nuclear RNA-binding proteins, including ribonucleoprotein (RNP) motifs RNP1 and RNP2, an RG-rich domain, and acidic sequences. Recombinant G3BP binds effectively to the GAP SH3 domain G3BP coimmunoprecipitates with GAP only when cells are in a proliferating state, suggesting a recruitment of a GAP-G3BP complex when Ras is in its activated conformation.  相似文献   

    20.
    The RING domain ubiquitin E3 ligase MDM2 is a key regulator of p53 degradation and a mediator of signals that stabilize p53. The current understanding of the mechanisms by which MDM2 posttranslational modifications and protein binding cause p53 stabilization remains incomplete. Here we present evidence that the MDM2 central acidic region is critical for activating RING domain E3 ligase activity. A 30-amino-acid minimal region of the acidic domain binds to the RING domain through intramolecular interactions and stimulates the catalytic function of the RING domain in promoting ubiquitin release from charged E2. The minimal activation sequence is also the binding site for the ARF tumor suppressor, which inhibits ubiquitination of p53. The acidic domain-RING domain intramolecular interaction is modulated by ATM-mediated phosphorylation near the RING domain or by binding of ARF. These results suggest that MDM2 phosphorylation and association with protein regulators share a mechanism in inhibiting the E3 ligase function and stabilizing p53 and suggest that targeting the MDM2 autoactivation mechanism may be useful for therapeutic modulation of p53 levels.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号