共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Du Hyeong Lee Woo Hyeon Bae Hongseok Ha Eun Gyung Park Yun Ju Lee Woo Ryung Kim Heui-Soo Kim 《Molecules and cells》2022,45(8):522
Transposable elements (TEs) account for approximately 45% of the human genome. TEs have proliferated randomly and integrated into functional genes during hominoid radiation. They appear as right-handed B-DNA double helices and slightly elongated left-handed Z-DNAs. Human endogenous retrovirus (HERV) families are widely distributed in human chromosomes at a ratio of 8%. They contain a 5′-long terminal repeat (LTR)-gag-pol-env-3′-LTR structure. LTRs contain the U3 enhancer and promoter region, transcribed R region, and U5 region. LTRs can influence host gene expression by acting as regulatory elements. In this review, we describe the alternative promoters derived from LTR elements that overlap Z-DNA by comparing Z-hunt and DeepZ data for human functional genes. We also present evidence showing the regulatory activity of LTR elements containing Z-DNA in GSDML. Taken together, the regulatory activity of LTR elements with Z-DNA allows us to understand gene function in relation to various human diseases. 相似文献
3.
4.
Organization and expression of the transforming region from the European elk papillomavirus (EEPV) 总被引:6,自引:0,他引:6
Harri Ahola Per Bergman Ann Charlotte Str m Jorge Moreno-Lop z Ulf Pettersson 《Gene》1986,50(1-3):195-205
5.
Hong‐Il Choi Nomar E. Waminal Hye Mi Park Nam‐Hoon Kim Beom Soon Choi Minkyu Park Doil Choi Yong Pyo Lim Soo‐Jin Kwon Beom‐Seok Park Hyun Hee Kim Tae‐Jin Yang 《The Plant journal : for cell and molecular biology》2014,77(6):906-916
Ginseng (Panax ginseng) is a famous medicinal herb, but the composition and structure of its genome are largely unknown. Here we characterized the major repeat components and inspected their distribution in the ginseng genome. By analyzing three repeat‐rich bacterial artificial chromosome (BAC) sequences from ginseng, we identified complex insertion patterns of 34 long terminal repeat retrotransposons (LTR‐RTs) and 11 LTR‐RT derivatives accounting for more than 80% of the BAC sequences. The LTR‐RTs were classified into three Ty3/gypsy (PgDel, PgTat and PgAthila) and two Ty1/Copia (PgTork and PgOryco) families. Mapping of 30‐Gbp Illumina whole‐genome shotgun reads to the BAC sequences revealed that these five LTR‐RT families occupy at least 34% of the ginseng genome. The Ty3/Gypsy families were predominant, comprising 74 and 33% of the BAC sequences and the genome, respectively. In particular, the PgDel family accounted for 29% of the genome and presumably played major roles in enlargement of the size of the ginseng genome. Fluorescence in situ hybridization (FISH) revealed that the PgDel1 elements are distributed throughout the chromosomes along dispersed heterochromatic regions except for ribosomal DNA blocks. The intensity of the PgDel2 FISH signals was biased toward 24 out of 48 chromosomes. Unique gene probes showed two pairs of signals with different locations, one pair in subtelomeric regions on PgDel2‐rich chromosomes and the other in interstitial regions on PgDel2‐poor chromosomes, demonstrating allotetraploidy in ginseng. Our findings promote understanding of the evolution of the ginseng genome and of that of related species in the Araliaceae. 相似文献
6.
Two cellular single-strand-specific DNA-binding proteins interact with two regions of the bovine papillomavirus type 1 genome, including the origin of DNA replication. 下载免费PDF全文
We have identified and purified to near homogeneity two specific single-stranded DNA-binding factors (SPSF I and II) with molecular masses of 42 and 39 kDa, respectively, from calf thymus. Gel retention analysis and competition experiments demonstrate that the ubiquitous proteins SPSF I and II specifically interact with single-stranded DNA derived from the minimal in vitro origin of replication of bovine papillomavirus type 1 and a region of the viral genome proposed to be involved in plasmid maintenance. Bovine papillomavirus type 1 proteins do not interfere with DNA binding of SPSF I and II. The exact location of the binding domains of SPSF I and II on the DNA has been determined by methylation interference and T4 DNA polymerase footprinting. A potential cellular binding site for SPSF I and II is the major promoter (P2) of the human c-myc gene. 相似文献
7.
Molecular cloning of bovine leukemia virus DNA integrated into the bovine tumor cell genome 总被引:3,自引:0,他引:3
The bovine leukemia virus (BLV) DNA harbored in the bovine tumor cell genome was cloned in lambda Charon 4A phage. Using either representative or 3' half-enriched BLV cDNA as a blot hybridization probe, clone lambda BLV-1 was shown to carry 9 kb of the BLV genome, flanked by cellular sequences at both ends. Restriction mapping with twelve endonucleases and hybridization of the DNA fragments to BLV cDNA representing a 3'-end portion of the viral genome revealed the presence and precise location of two long terminal repeats (LTRs) and virus-cell junctions. Thus, lambda BLV-1 appears to contain the complete BLV genome and flanking tumor cellular sequences. The restriction map of the cloned BLV proviral DNA closely resembles that previously reported for unintegrated linear proviral DNA, but differs significantly from that of the integrated provirus of another BLV isolate, the difference occurring preferentially in the putative gag and pol genes. 相似文献
8.
9.
10.
11.
Egawa N Nakahara T Ohno S Narisawa-Saito M Yugawa T Fujita M Yamato K Natori Y Kiyono T 《Journal of virology》2012,86(6):3276-3283
Papillomavirus genomes are thought to be amplified to about 100 copies per cell soon after infection, maintained constant at this level in basal cells, and amplified for viral production upon keratinocyte differentiation. To determine the requirement for E1 in viral DNA replication at different stages, an E1-defective mutant of the human papillomavirus 16 (HPV16) genome featuring a translation termination mutation in the E1 gene was used. The ability of the mutant HPV16 genome to replicate as nuclear episomes was monitored with or without exogenous expression of E1. Unlike the wild-type genome, the E1-defective HPV16 genome became established in human keratinocytes only as episomes in the presence of exogenous E1 expression. Once established, it could replicate with the same efficiency as the wild-type genome, even after the exogenous E1 was removed. However, upon calcium-induced keratinocyte differentiation, once again amplification was dependent on exogenous E1. These results demonstrate that the E1 protein is dispensable for maintenance replication but not for initial and productive replication of HPV16. 相似文献
12.
13.
Evolutionary dynamics of an ancient retrotransposon family provides insights into evolution of genome size in the genus Oryza 总被引:1,自引:0,他引:1
Ammiraju JS Zuccolo A Yu Y Song X Piegu B Chevalier F Walling JG Ma J Talag J Brar DS SanMiguel PJ Jiang N Jackson SA Panaud O Wing RA 《The Plant journal : for cell and molecular biology》2007,52(2):342-351
Long terminal repeat (LTR) retrotransposons constitute a significant portion of most eukaryote genomes and can dramatically change genome size and organization. Although LTR retrotransposon content variation is well documented, the dynamics of genomic flux caused by their activity are poorly understood on an evolutionary time scale. This is primarily because of the lack of an experimental system composed of closely related species whose divergence times are within the limits of the ability to detect ancestrally related retrotransposons. The genus Oryza, with 24 species, ten genome types, different ploidy levels and over threefold genome size variation, constitutes an ideal experimental system to explore genus-level transposon dynamics. Here we present data on the discovery and characterization of an LTR retrotransposon family named RWG in the genus Oryza. Comparative analysis of transposon content (approximately 20 to 27,000 copies) and transpositional history of this family across the genus revealed a broad spectrum of independent and lineage-specific changes that have implications for the evolution of genome size and organization. In particular, we provide evidence that the basal GG genome of Oryza (O. granulata) has expanded by nearly 25% by a burst of the RWG lineage Gran3 subsequent to speciation. Finally we describe the recent evolutionary origin of Dasheng, a large retrotransposon derivative of the RWG family, specifically found in the A, B and C genome lineages of Oryza. 相似文献
14.
Selective enhancement of bovine papillomavirus type 1 DNA replication in Xenopus laevis eggs by the E6 gene product. 总被引:1,自引:1,他引:1 下载免费PDF全文
Genetic analyses of bovine papillomavirus type 1 (BPV-1) DNA in transformed mammalian cells have indicated that the E6 gene product is essential for the establishment and maintenance of a high plasmid copy number. In order to analyze the direct effect of the E6 protein on the replication of a BPV-1-derived plasmid, a cDNA containing the BPV-1 E6 open reading frame was subcloned into an SP6 vector for the in vitro synthesis of the corresponding mRNA. The SP6 E6 mRNA was injected into Xenopus laevis oocytes to determine the subcellular localization of the E6 gene product and to analyze the effect of the protein on BPV-1 DNA replication. SP6 E6 mRNA microinjected into stage VI oocytes was translated into a 15.5-kilodalton protein that was specifically immunoprecipitated by antibodies directed against the E6 gene product. The E6 protein preferentially accumulated in oocyte nuclei, a localization which is consistent with the replicative functions in which it has been implicated. The expression of E6 in replication-competent mature oocytes selectively enhanced the replication of a BPV-derived plasmid, indicating a direct role for this gene product in the control of BPV-1 DNA replication. 相似文献
15.
Kinetoplast DNA (kDNA), the mitochondrial genome of trypanosomatids, consists of several thousand topologically interlocked DNA circles. Mitochondrial histone H1-like proteins were implicated in the condensation of kDNA into a nucleoid structure in the mitochondrial matrix. However, the mechanism that remodels kDNA, promoting its accessibility to the replication machinery, has not yet been described. Analyses, using yeast two hybrid system, co-immunoprecipitation, and protein-protein cross-linking, revealed specific protein-protein interactions between the kDNA replication initiator protein universal minicircle sequence-binding protein (UMSBP) and two mitochondrial histone H1-like proteins. Fluorescence and electron microscopy, as well as biochemical analyses, demonstrated that these protein-protein interactions result in the decondensation of kDNA. UMSBP-mediated decondensation rendered the kDNA network accessible to topological decatenation by topoisomerase II, yielding free kDNA minicircle monomers. Hence, UMSBP has the potential capacity to function in vivo in the activation of the prereplication release of minicircles from the network, a key step in kDNA replication, which precedes and enables its replication initiation. These observations demonstrate the prereplication remodeling of a condensed mitochondrial DNA, which is mediated via specific interactions of histone-like proteins with a replication initiator, rather than through their posttranslational covalent modifications. 相似文献
16.
17.
Interactions of the papovavirus DNA replication initiator proteins, bovine papillomavirus type 1 E1 and simian virus 40 large T antigen, with human replication protein A 下载免费PDF全文
Papovaviruses utilize predominantly cellular DNA replication proteins to replicate their own viral genomes. To appropriate the cellular DNA replication machinery, simian virus 40 (SV40) large T antigen (Tag) binds to three different cellular replication proteins, the DNA polymerase alpha-primase complex, the replication protein A (RPA) complex, and topoisomerase I. The functionally similar papillomavirus E1 protein has also been shown to bind to the DNA polymerase alpha-primase complex. Enzyme-linked immunoassay-based protein interaction assays and protein affinity pull-down assays were used to show that the papillomavirus E1 protein also binds to the cellular RPA complex in vitro. Furthermore, SV40 Tag was able to compete with bovine papillomavirus type 1 E1 for binding to RPA. Each of the three RPA subunits was individually overexpressed in Escherichia coli as a soluble fusion protein. These fusion proteins were used to show that the E1-RPA and Tag-RPA interactions are primarily mediated through the 70-kDa subunit of RPA. These results suggest that different viruses have evolved similar mechanisms for taking control of the cellular DNA replication machinery. 相似文献
18.
E1 recognition sequences in the bovine papillomavirus type 1 origin of DNA replication: interaction between half sites of the inverted repeats. 下载免费PDF全文
The E1 protein encoded by bovine papillomavirus type 1 (BPV-1) is required for viral DNA replication, and it binds site specifically to an A/T-rich palindromic sequence within the viral origin of replication. The protein is targeted to this site through cooperative interactions and binding with the virus-encoded E2 protein. To explore the nature of the E1 binding site, we inserted a series of homologous DNA linkers at the center of dyad symmetry within the E1 recognition palindrome. The effects of these modifications indicated that the E1 recognition palindrome can be separated into functional half sites. The series of insertions manifest a phasing relationship with respect to the wild-type BPV-1 genome in that greater biological activity was measured when full integral turns of the DNA helix separated the palindrome than when the separations were half-turns. This phasing pattern of activity was observed to occur in a variety of biological phenotypes, including transformation efficiency, stable plasmid copy number in cell lines established from pooled foci, and transient replication of full-length viral genomes. For replication reporter constructs where E1 and E2 are supplied in trans by the respective expression vectors, distance between the half sites seems to play a major role, yet the phasing relationships are measurable. DNase I protection studies showed that E1 bound very poorly to the construct containing a 5-bp linker, and binding was close to the wild-type level for the 10-bp insertion, consistent with a requirement for a phasing function between half sites with a modulus of 10 bp. Binding to the 15- and 20-bp insertion mutants was weak, but only for the 20-bp insertions was protection over both halves of the palindrome measurable. As it had been previously reported that the 18-bp palindrome contains sufficient nucleotide sequence information for E1 binding, we speculate that a minimal E1 recognition motif is presented in each half site. A comparison between this sequence and that of an upstream region that also binds E1 (the E2RE1 region) revealed a common pentanucleotide motif of APyAAPy. Mutants with substitutions of the ATAAT elements within E2RE1 failed to bind E1 protein. We present models for how repeats of the pentanucleotide sequence may coordinate E1 binding at the dyad symmetry axis of the origin and compare the DNA sequence organization of BPV-1 with those of the simian virus 40 and polyomaviruses at their origins of DNA replication. 相似文献
19.
Hutchinson-Gilford progeria syndrome (HGPS) is a rare genetic disorder because of a LMNA gene mutation that produces a mutant lamin A protein (progerin). Progerin also has been correlated to physiological aging and related diseases. However, how progerin causes the progeria remains unknown. Here, we report that the large subunit (RFC1) of replication factor C is cleaved in HGPS cells, leading to the production of a truncated RFC1 of ~ 75 kDa, which appears to be defective in loading proliferating cell nuclear antigen (PCNA) and pol δ onto DNA for replication. Interestingly, the cleavage can be inhibited by a serine protease inhibitor, suggesting that RFC1 is cleaved by a serine protease. Because of the crucial role of RFC in DNA replication, our findings provide a mechanistic interpretation for the observed early replicative arrest and premature aging phenotypes of HPGS and may lead to novel strategies in HGPS treatment. Furthermore, this unique truncated form of RFC1 may serve as a potential marker for HGPS. 相似文献
20.
Evidence that replication initiates at only some of the potential origins in each oligomeric form of bovine papillomavirus type 1 DNA. 总被引:13,自引:3,他引:13 下载免费PDF全文
J B Schvartzman S Adolph L Martín-Parras C L Schildkraut 《Molecular and cellular biology》1990,10(6):3078-3086
In a subclone of ID13 mouse fibroblasts latently infected with bovine papillomavirus type 1 (BPV-1) DNA, the viral genome occurred as a mixture of extrachromosomal circular monomers and oligomers. Multiple copies were also associated with the host cell genome, predominantly at a single site in a head-to-tail tandem array. We examined the replicative intermediates of extrachromosomal forms of BPV-1 DNA by using two-dimensional gel electrophoresis. The results obtained indicate that initiation of DNA replication occurred near the center of the EcoRI-BamHI 5.6-kilobase fragment. In some molecules, however, this fragment was replicated from one end to the other by means of a single fork initiated elsewhere. Termination also occurred within this fragment. The EcoRI-BamHI 2.3-kilobase fragment replicated as a DNA molecule containing a termination site for DNA replication and also by means of a single fork traversing the fragment from one end to the other. Thus, replication forks proceeded through these fragments in different manners, apparently depending on whether they were part of a monomer, a dimer, a trimer, or higher oligomers. These observations lead to the conclusion that initiation of DNA replication in BPV-1 DNA takes place at or close to plasmid maintenance sequence 1. From this point, replication proceeds bidirectionally and termination occurs approximately 180 degrees opposite the origin. The results obtained are consistent with one or more replication origins being quiescent in BPV-1 DNA oligomers. 相似文献