首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
N-formyl-methionyl-leucyl-phenylalanine (FMLP), a synthetic analogue of bacterial chemotactic peptide, may play a role in airway hyperresponsiveness, and is cleaved by neutral endopeptidase-24.11 (enkephalinase). To determine the effect of FMLP on parasympathetic contraction of airway smooth muscle and its modulation by endogenous enkephalinase, we studied isolated rabbit tracheal ring segments under isometric conditions in vitro. FMLP did not cause muscle contraction, but it potentiated the contractile response to electrical field stimulation (EFS) in a dose-dependent fashion, with the maximal increase from the baseline response being 59.8 +/- 6.2% (mean +/- S.E.M., P less than 0.001), an effect that was abolished by t-Boc-Phe-Leu-Phe-Leu-Phe, partially inhibited by pyrilamine, but not by phentolamine or [D-Pro2,D-Trp7,9]substance P. In contrast, the contractile response to administered acetylcholine was not affected by FMLP. Pretreatment of tissues with thiorphan, an enkephalinase inhibitor, further potentiated the effect of FMLP on the EFS-induced contraction. These results suggest that FMLP facilitates cholinergic neurotransmission in rabbit airway smooth muscle probably by increasing acetylcholine release, and that this effect may be modulated by enkephalinase in the airway.  相似文献   

2.
Ferret tracheal segments were infected with human influenza virus A/Taiwan/86 (H1N1) in vitro. After 4 days, the smooth muscle contractile responses to acetylcholine and to substance P were measured. The response to substance P was markedly accentuated, with a threefold increase in force of contraction at a substance P concentration of 10(-5) M, the highest concentration tested. In contrast, the response to acetylcholine was not affected by viral infection. Histological examination of tissues revealed extensive epithelial desquamation. Activity of enkephalinase (neutral metallo-endopeptidase, EC.3.4.24.11), an enzyme that degrades substance P, was decreased by 50% in infected tissues. Inhibiting enkephalinase activity by pretreating with thiorphan (10(-5) M) increased the response to substance P to the same final level in both infected and control tissues. Inhibiting other substance P-degrading enzymes including kininase II (angiotensin-converting enzyme), serine proteases, and aminopeptidases did not affect the response to substance P. Inhibiting cyclooxygenase and lipoxygenase activity using indomethacin and BW 755c did not affect hyperresponsiveness to substance P. Pretreating tissues with antagonists of alpha-adrenoceptors, beta-adrenoceptors, and H1 histamine receptors (phentolamine 10(-5) M, propranolol 5 X 10(-6) M, and pyrilamine 10(-5) M, respectively) had no effect on substance P-induced contraction. These results demonstrate that infection of ferret airway tissues with influenza virus increases the contractile response of airway smooth muscle to substance P. This effect is caused by decreased enkephalinase activity in infected tissues.  相似文献   

3.
1. Ciliary beat frequency in epithelial outgrowths from cultured explants of Rana pipiens palate changed markedly from second to second. 2. Acetylcholine (10(-8) to 10(-3) M) and substance P (1.35 x 10(-7) to 1.35 x 10(-5) M) increased and stabilized ciliary beat frequency. The effect of acetylcholine and part of the effect of substance P were blocked by atropine (10(-4) M). 3. Acetylcholine appears to act directly and substance P both directly and indirectly through the release of acetylcholine.  相似文献   

4.
We investigated whether the airway constrictive response to stimulation of bronchopulmonary C-fiber afferents is altered during the maturation process. Isometric tension was measured in airway rings isolated from three tracheobronchial locations (intrathoracic trachea and main and hilar bronchi) and compared in mature [M, 407 +/- 10 (SE) g body wt, n = 36] and immature (IM, 161 +/- 5 g body wt, n = 35) guinea pigs. Our results showed no difference in the ACh (10(-5) M)- or KCl (40 mM)-induced contraction between M and IM groups, regardless of the airway location. In sharp contrast, the concentration-response curves of 10(-8)-10(-6) M capsaicin were distinctly lower in IM hilar bronchi; for example, response to the same concentration of capsaicin (10(-6) M) was 89.2 +/- 15.3% of the response to 10(-5) M ACh in IM and 284.7 +/- 43.2% in M animals. Similar, but smaller, differences in the bronchoconstrictive response to capsaicin between IM and M groups were also observed in the trachea and main bronchus. Electrical field stimulation induced airway constriction in all three locations in M and IM groups. However, after administration of 10(-6) M atropine and 10(-6) M propranolol, electrical field stimulation-induced contraction was significantly smaller in the hilar bronchus of IM than M animals, and this difference was not prevented by pretreatment with 5 x 10(-5) M indomethacin. Although radioimmunoassay showed no difference in the tissue content of substance P between M and IM airways, the constrictive responses to exogenous substance P and neurokinin A were markedly greater in M airways at all three locations. In conclusion, the constriction of isolated airways evoked by C-fiber stimulation was significantly weaker in the IM guinea pigs, probably because of a less potent effect of tachykinins on the airway smooth muscle.  相似文献   

5.
Neuronal muscarinic (M(2)) receptors inhibit release of acetylcholine from the vagus nerves. Hyperreactivity in antigen-challenged guinea pigs is due to blockade of these M(2) autoreceptors by eosinophil major basic protein (MBP) increasing the release of acetylcholine. In vivo, substance P-induced hyperactivity is vagally mediated. Because substance P induces eosinophil degranulation, we tested whether substance P-induced hyperreactivity is mediated by release of MBP and neuronal M(2) receptor dysfunction. Pathogen-free guinea pigs were anesthetized and ventilated. Thirty minutes after intravenous administration of [Sar(9),Met(O(2))(11)]- substance P, guinea pigs were hyperreactive to vagal stimulation and M(2) receptors were dysfunctional. The depletion of inflammatory cells with cyclophosphamide or the administration of an MBP antibody or a neurokinin-1 (NK(1)) receptor antagonist (SR-140333) all prevented substance P-induced M(2) dysfunction and hyperreactivity. Intravenous heparin acutely reversed M(2) receptor dysfunction and hyperreactivity. Thus substance P releases MBP from eosinophils resident in the lungs by stimulating NK(1) receptors. Substance P-induced hyperreactivity is mediated by blockade of inhibitory neuronal M(2) receptors by MBP, resulting in increased release of acetylcholine.  相似文献   

6.
To elucidate how substance P (SP) produces submucosal gland secretion, we examined the effects of SP on the glandular contractile response and 3H-labeled glycoconjugate release in isolated submucosal glands from feline tracheae. SP (10(-12) to 10(-4) M) produced dose-dependent increases in the contractile response, and the maximal tension induced by SP was approximately 70% of the response to methacholine. SP-induced contraction is blocked completely by atropine and augmented by neostigmine. Pretreatment with hemicholinium 3, an acetylcholine synthesis inhibitor, inhibited the contractile response to SP. Pretreatment with tetrodotoxin did not inhibit the contractile response to SP. Capsaicin induced tension of a magnitude similar to that of SP. SP (10(-7) M) produced a significant increase (74% above control) in radiolabeled glycoconjugate release from isolated glands, whereas SP had no significant effects on glycoconjugate release from tracheal explants, probably because of epithelial suppression. Atropine abolished SP-evoked glycoconjugate release in isolated glands. Our findings indicate that 1) SP induces glandular contraction, which is related to the squeezing of mucus in the ducts and secretory tubules, 2) SP stimulates radiolabeled glycoconjugate release in isolated submucosal gland, probably involving mucus synthesis and/or cellular secretion, and 3) these two actions are mediated by a peripheral cholinergic mechanism.  相似文献   

7.
To determine the role of endogenous enkephalinase (EC 3.4.24.11) in regulating peptide-induced contraction of airway smooth muscle, we studied the effect of the enkephalinase inhibitor, leucine-thiorphan (Leu-thiorphan), on responses of isolated ferret tracheal smooth muscle segments to substance P (SP) and to electrical field stimulation (EFS). Leu-thiorphan shifted the dose-response curve to SP to lower concentrations. Atropine or the SP antagonist [D-Pro2,D-Trp7,9]SP significantly inhibited SP-induced contractions in the presence of Leu-thiorphan. Leu-thiorphan increased the contractile responses to EFS dose dependently, an effect that was significantly inhibited by the SP antagonist [D-Pro2,D-Trp7,9]SP. SP, in a concentration that did not cause contraction, increased the contractile responses to EFS. This effect was augmented by Leu-thiorphan dose dependently and was not inhibited by hexamethonium or by phentolamine but was inhibited by atropine. Because contractile responses to acetylcholine were not significantly affected by SP or by Leu-thiorphan, the potentiating effects of SP were probably on presynaptic-postganglionic cholinergic neurotransmission. Captopril, bestatin, or leupeptin did not augment contractions, suggesting that enkephalinase was responsible for the effects. These results suggest that endogenous tachykinins modulate smooth muscle contraction and endogenous enkephalinase modulates contractions produced by endogenous or exogenous tachykinins and tachykinin-induced facilitation of cholinergic neurotransmission.  相似文献   

8.
To determine whether prostaglandin D2 (PGD2) modulates cholinergic neurotransmission in airway smooth muscle and, if so, what the mechanism of action is, we studied bronchial segments from dogs under isometric conditions in vitro. PGD2 (10(-8)-10(-5) M) elicited dose-dependent muscle contraction, which was reduced after blockade of muscarinic receptors, so that 50% effective dose (ED50) increased from 1.3 +/- 0.3 X 10(-6) to 3.9 +/- 1.0 X 10(-6) M by atropine (10(-6) M) (mean +/- SE, P less than 0.05). Physostigmine, at a concentration insufficient to alter base-line tension (10(-8) M), enhanced the PGD2-induced contraction and decreased ED50 to 6.4 +/- 0.5 X 10(-7) M (P less than 0.05). When added at the highest doses that did not cause spontaneous contraction (1.9 +/- 0.5 X 10(-7) M), PGD2 increased the contractile response to electrical field stimulation (1-50 Hz) by 21.9 +/- 6.6% (P less than 0.001). In contrast to this effect, the response to administered acetylcholine was not affected by PGD2. On the other hand, PGD2-induced augmentation of the response to electrical field stimulation (5 Hz) was further increased from 23.6 +/- 3.0 to 70.4 +/- 8.8% in the presence of physostigmine (10(-8) M) and was abolished by atropine but not affected by the alpha-adrenergic antagonist phentolamine or the histamine H1-blocker pyrilamine. These results suggest that the contraction of airway smooth muscle induced by PGD2 is in in part mediated by a cholinergic action and that PGD2 prejunctionally augments the parasympathetic contractile response, likely involving the accelerated release of acetylcholine at the neuromuscular junction.  相似文献   

9.
Effects of nonadrenergic and noncholinergic (NANC) inhibitory nerves on cholinergic neurotransmission were examined in isolated bronchial segments from cats in the presence of propranolol (10(-6) M) and indomethacin (10(-6) M) by use of electrical field stimulation (EFS) techniques. EFS caused contraction alone in tissues at the baseline tension and biphasic responses (contraction and relaxation) in tissues precontracted with 5-hydroxytryptamine. Contraction was abolished by atropine (10(-6) M), and relaxation was abolished by tetrodotoxin (10(-6) M). At the baseline tension, EFS at frequencies greater than 10 Hz inhibited the subsequent (4 min later) contraction induced by EFS at 1-5 Hz. EFS-induced inhibition was stimulus frequency dependent and reached maximum at 20 Hz. However, EFS at 20 Hz did not inhibit the subsequent contractile response to acetylcholine (10(-7) to 10(-3) M). Exogenously applied vasoactive intestinal peptide mimicked EFS-induced inhibitory effects, but substance P and calcitonin gene-related peptide did not. The inhibitory effect of EFS at 20 Hz was not altered by pyrilamine, cimetidine, naloxone, methysergide, phentolamine, BW755C, AF-DX 116, or removal of epithelium. These results imply that the NANC transmitter acts via presynaptic cholinergic receptors.  相似文献   

10.
Activation of central muscarinic receptors results in an antinociceptive response in experimental animals. Employing intrathecal (i.t.) injection and radiant heat applied to a rat's tail as the experimental paradigm, a spinally-mediated antinociceptive response was obtained following injection of cholinergic agonists. Since "cholinergic' analgesia is mediated independently of the opiate system, the possibility was considered that this response was mediated through inhibition of the local release of substance P. Rats were prepared with indwelling i.t. catheters which terminated in the L2-L3 region of the spinal cord. I.t. injection of carbachol (0.05-5 micrograms) or neostigmine (1-10 micrograms), but not nicotine (0.5-10 micrograms) produced dose-related increases in tail flick latencies. Pretreatment with i.t. injection of atropine or hemicholinium-3 significantly inhibited the antinociceptive response to neostigmine. Spinal substance P levels were measured 30 min following 0.5 micrograms carbachol. Levels in the dorsal horn were reduced by 30% compared with saline controls. Levels in the ventral horn were unchanged by carbachol. These results support the role of endogenous spinal acetylcholine in pain modification and suggest an interaction with substance P neurons of the dorsal spinal cord.  相似文献   

11.
We previously reported that when neostigmine, an inhibitor of acetylcholine esterase, was injected into the third cerebral ventricle, the concentration of hepatic venous plasma glucose was increased via central muscarinic receptors in anesthetized rats. To determine whether brain histamine receptors are involved in cholinergic system transmission with regard to central nervous system (CNS)-mediated glucoregulation, we examined the effects of the H1 receptor antagonist pyrilamine and the H2 receptor antagonist ranitidine on neostigmine-induced hyperglycemia in anesthetized rats. The injection of pyrilamine (5 x 10(-9)-5 x 10(-7) mol) into the third cerebral ventricle suppressed hyperglycemia induced by intraventricular injection of neostigmine (1 x 10(-9) mol) in a dose-dependent manner. Injection of ranitidine (5 x 10(-9)-5 x 10(-7) mol) into the third cerebral ventricle did not suppress the hyperglycemia induced by neostigmine, but enhanced it in a dose-dependent manner. These findings suggest that neostigmine-induced CNS-mediated hyperglycemia is transmitted by not only brain cholinergic muscarinic receptors but also in part by histamine H1 receptors.  相似文献   

12.
M L Cohen  A S Landry 《Life sciences》1980,26(10):811-822
Vasoactive intestinal polypeptide (VIP) was examined in vitro for effects on tone and neuronal release mechanisms in intestinal smooth muscle since this is a site of high peptide concentration. VIP contracted the guinea pig ileum and rabbit jejunum in concentrations ranging from 10?9 to 10?7 M. Increased tone in the guinea pig ileum was partially antagonized by the anticholinergic agent, atropine (4.38 × 10?6 M) suggesting that one component of the contractile response was due to the indirect release of acetylcholine. The H1 receptor antagonist, pyrilamine, did not alter the increased tone produced by VIP indicating that histamine release did not contribute to the ileal contractile response and that VIP exerted a selective effect to enhance neuronal release of acetylcholine. The ability of VIP to modulate acetylcholine release was confirmed in field stimulated ileal preparations where VIP increased the force developed to endogenously released acetylcholine without altering the direct response to acetylcholine. In rabbit jejunum and ileal smooth muscle, VIP related cyclic AMP levels. However, inhibition of phosphodiesterase with papaverine did not potentiate either the VIP-induced ileal contraction or enhancement of the field stimulated response. This raises the possibility that increases in intestinal cyclic AMP may be involved more in VIP-induced alterations in ion transport or secretory phenomenon than in intestinal motility. These studies describing the ability of VIP to modulate acetylcholine release and to increase ileal tone are consistent with the proposed role of VIP in intestinal patholgies involving excessive mucous secretion and motility.  相似文献   

13.
The existence of substance P immunoreactive nerves in the trachea of guinea pig is known. In this study, capsaicin induced a long-lasting and marked contraction in the guinea pig trachea and nicotine-induced contraction was partially reduced in the capsaicin-treated muscle. Furthermore, the contractile response to nicotine (10(-5) M) in the presence of atropine (10(-7) M) was abolished by a substance P antagonist, [D-Arg1, D-Pro2, D-Trp7,9 Leu11]substance P (10(-5) M). These findings suggest that noncholinergic contractile response to nicotine may be due to the release of material(s) resembling substance P in the isolated tracheal smooth muscle preparation of guinea pig.  相似文献   

14.
1. Acetylcholine reduced atrial contractions by 82.5% in guinea pig, 50.8% in rat, and 41.5% in rabbit. 2. The EC50 values for the negative inotropic effect of acetylcholine were 3.3 x 10(-7) M in rat and guinea pig atria and 4.1 x 10(-6) M in rabbit atria. 3. There was no correlation between the species differences in the negative inotropic effect of acetylcholine in atria and the density or affinity of acetylcholinesterase or muscarinic receptors. 4. Inhibition of atrial acetylcholinesterase with soman reduced the EC50 of acetylcholine three-fold in all species, but did not change the maximal inotropic effect of acetylcholine. 5. Species differences in the negative inotropic effect of acetylcholine may be caused by differences in the coupling between myocardial muscarinic receptors and the ion channels that mediate negative inotropy.  相似文献   

15.
Vasoactive effects of substance P on isolated rabbit pulmonary artery   总被引:1,自引:0,他引:1  
The vasoactive properties of substance P (SP) were studied in isolated rabbit pulmonary artery (PA) segments in vitro. In the absence of active base-line tone, noncumulative administration of SP (10(-11) to 10(-4) M) produced dose-dependent increases in PA tension. The peak isometric tension (Tmax) with SP was similar to the Tmax response to epinephrine; however, the doses of the agonist producing a threshold contraction and 25% of Tmax (ED25) were significantly lower for SP. In the presence of active base-line tone, induced by epinephrine or 5-hydroxytryptamine, SP produced transient PA relaxation which was directly related to the magnitude of the precontracted PA tension. Blockade of neurotransmission with tetrodotoxin (1 microgram/ml) and antagonists to alpha 1-adrenergic and histamine receptor binding had no effect on the contractile response to SP. On the other hand, PA contraction to an ED50 dose of SP was 1) inhibited by a mean of 33 +/- 10% (SE) following pretreatment with the cholinesterase inhibitor, neostigmine (10(-6) M) and 2) augmented by 52 +/- 21% with the cholinergic antagonist, atropine (10(-4) M). The latter also completely blocked the relaxation response to SP in precontracted PA. Similarly, removal of the PA endothelium also abolished the relaxation response to SP. In contrast, SP-induced contraction was markedly inhibited by the cyclooxygenase inhibitor, meclofenamate (1 microgram/ml), as well as the SP antagonist, D-Pro2, D-Trp7,9-SP.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Somatostatin potentiates cholinergic neurotransmission in ferret trachea   总被引:1,自引:0,他引:1  
We studied the effect of somatostatin on contractile responses to electrical field stimulation (EFS) in isolated ferret tracheal segments. Somatostatin (up to 10(-5) M) did not change resting tension, but it potentiated the contractile response to EFS dose dependently, with a maximum effect at 10(-6) M. Thus, at a concentration of 10(-6) M, somatostatin significantly decreased the mean log of EFS frequency producing 50% of maximum contraction from a control value of 0.52 +/- 0.07 to 0.24 +/- 0.06 (SE) Hz (P less than 0.01). The potentiating effect of somatostatin (10(-6) M) was not inhibited by hexamethonium, indomethacin, BW755C, pyrilamine, methysergide, or D,Pro2,D,Trp7,9-SP, but it was inhibited by atropine or by the somatostatin antagonist cyclo[7-aminoheptanoyl-Phe-D-Trp-Lys-Thr(Bzl)]. In contrast to EFS-induced contraction, contractions produced by acetylcholine (10(-9) to 10(-3) M) were not affected by somatostatin at a concentration of 10(-6) M. These results suggest that somatostatin potentiates contractions produced by EFS via presynaptic cholinergic mechanisms and probably through a specific somatostatin receptor.  相似文献   

17.
Formyl peptide-induced contraction of human airways in vitro   总被引:4,自引:0,他引:4  
Formylmethionylleucylphenylalanine (FMLP) is a synthetic analogue of bacterial chemotactic factors. We studied the contraction of human airway tissue in vitro by FMLP. FMLP induced a concentration-dependent contraction of all bronchial spiral strips studied (n = 45). The maximum tension generated in response to FMLP was 86.6 +/- 7.0% (SE) of the maximum response to histamine. The contraction was not reduced by the histamine H1-receptor antagonist pyrilamine, the cyclooxygenase and lipoxygenase inhibitors indomethacin and BW755C, the muscarinic antagonist atropine, or capsaicin which depletes stores of substance P. The concentration-response curve was shifted to the right by the polypeptide antagonist N-t-BOC-phenylalanylleucylphenylalanylleucylphenylalanine and the leukotriene antagonist FPL 55712. When 2 successive FMLP concentration-response curves were performed the maximum response was significantly reduced from 114.8 +/- 9.1% of the histamine maximum to 39.3 +/- 6.1%. The contraction of human airways in vitro by an agent that is structurally and functionally similar to chemotactic peptides released from bacteria may have important implications in airway disease.  相似文献   

18.
The mode of action of the excitatory neuropeptide substance P was studied on the circular muscle of the guinea pig ileum in vitro. Atropine or tetrodotoxin strongly inhibited substance P-induced phasic contractions. The atropine-resistant part of the circular response was blocked by tetrodotoxin. A newly-developed method for quantitative evaluation revealed a rightward displacement of the substance P concentration-response curve, as well as a strong depression of the maximum effect, in the presence of atropine. These results indicate that cholinergic (and probably also non-cholinergic) excitatory neurons mediate phasic contractions due to substance P. The tonic component of the substance P-induced contraction was slightly reduced by atropine.  相似文献   

19.
Tiotropium bromide (Ba 679 BR) is a novel potent and long-lasting muscarinic antagonist that has been developed for the treatment of chronic obstructive airways disease (COPD). Binding studies with [3H]tiotropium bromide in human lung have confirmed that this is a potent muscarinic antagonist with equal affinity for M1-, M2- and M3-receptors and is approximately 10-fold more potent than ipratropium bromide. Tiotropium bromide dissociates very slowly from lung muscarinic receptors compared with ipratropium bromide. In vitro tiotropium bromide has a potent inhibitory effect against cholinergic nerve-induced contraction of guinea-pig and human airways, that has a slower onset than atropine or ipratropium bromide. After washout, however, tiotropium bromide dissociates extremely slowly compared with the dissociation of atropine and ipratropium bromide. Measurement of acetylcholine (ACh) release from guinea-pig trachea shows that tiotropium bromide, ipratropium bromide and atropine all increase ACh release on neural stimulation and that this effect is washed out equally quickly for the three antagonists. This confirms binding studies to transfected human muscarinic receptors which suggested that tiotropium bromide dissociates slowly from M3-receptors (on airway smooth muscle) but rapidly from M2 autoreceptors (on cholinergic nerve terminals). Clinical studies with inhaled tiotropium bromide confirm that it is a potent and long-lasting bronchodilator in COPD and asthma. Furthermore, it protects against cholinergic bronchoconstriction for > 24 h. This suggests that tiotropium bromide will be a useful bronchodilator, particularly in patients with COPD, and may be suitable for daily dosing. The selectivity for M3- over M2-receptors may also confer a clinical advantage.  相似文献   

20.
To determine whether neutral endopeptidase (NEP), also called enkephalinase (EC 3.4.24.11), modulates the effects of exogenous and endogenous tachykinins in vivo, we studied the effects of aerosolized phosphoramidon, a specific NEP inhibitor, on the responses to aerosolized substance P (SP) and on the atropine-resistant response to vagus nerve stimulation (10 V, 5 ms for 20 s) in guinea pigs. SP alone (10(-7) to 10(-4) M; each concentration, 7 breaths) caused no change in total pulmonary resistance (RL, P greater than 0.5). Phosphoramidon (10(-4) M, 90 breaths) caused no change either in base-line RL (P greater than 0.5) or in the response to aerosolized acetylcholine (P greater than 0.5). However, in the presence of phosphoramidon, SP (7 breaths) produced a concentration-dependent increase in RL at concentrations greater than or equal to 10(-5) M (P less than 0.001). Phosphoramidon (10(-7) to 10(-4) M; each concentration, 90 breaths) induced a concentration-dependent potentiation of SP-induced bronchoconstriction (10(-4) M, 7 breaths; P less than 0.01). Vagus nerve stimulation (0.5-3 Hz), in the presence of atropine, induced a frequency-dependent increase in RL (P less than 0.001). Phosphoramidon potentiated the atropine-resistant responses to vagus nerve stimulation (P less than 0.001) at frequencies greater than 0.5 Hz. The tachykinin antagonist [D-Arg1,D-Pro2,D-Trp7,9,Leu11]-substance P abolished the effects of phosphoramidon on the atropine-resistant response to vagus nerve stimulation (2 Hz, P less than 0.005). NEP-like activity in tracheal homogenates of guinea pig was inhibited by phosphoramidon with a concentration producing 50% inhibition of 5.3 +/- 0.8 nM.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号