首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
CHO1 is a mammalian kinesin-like motor protein of the MKLP1 subfamily. It associates with the spindle midzone during anaphase and concentrates to a midbody matrix during cytokinesis. CHO1 was originally implicated in karyokinesis, but the invertebrate homologues of CHO1 were shown to function in the midzone formation and cytokinesis. To analyze the role of the protein in mammalian cells, we mutated the ATP-binding site of CHO1 and expressed it in CHO cells. Mutant protein (CHO1F') was able to interact with microtubules via ATP-independent microtubule-binding site(s) but failed to accumulate at the midline of the central spindle and affected the localization of endogenous CHO1. Although the segregation of chromosomes, the bundling of midzone microtubules, and the initiation of cytokinesis proceeded normally in CHO1F'-expressing cells, the completion of cytokinesis was inhibited. Daughter cells were frequently entering interphase while connected by a microtubule-containing cytoplasmic bridge from which the dense midbody matrix was missing. Depletion of endogenous CHO1 via RNA-mediated interference also affected the formation of midbody matrix in dividing cells, caused the disorganization of midzone microtubules, and resulted in abortive cytokinesis. Thus, CHO1 may not be required for karyokinesis, but it is essential for the proper midzone/midbody formation and cytokinesis in mammalian cells.  相似文献   

2.
Annexins are Ca(2+)-binding, membrane-fusogenic proteins with diverse but poorly understood functions. Here, we show that during cell cycle progression annexin 11 translocates from the nucleus to the spindle poles in metaphase and to the spindle midzone in anaphase. Annexin 11 is recruited to the midbody in late telophase, where it forms part of the detergent-resistant matrix that also contains CHO1. To investigate the significance of these observations, we used RNA interference to deplete cells of annexin 11. A combination of confocal and video time-lapse microscopy revealed that cells lacking annexin 11 fail to establish a functional midbody. Instead, daughter cells remain connected by intercellular bridges that contain bundled microtubules and cytoplasmic organelles but exclude normal midbody components such as MKLP1 and Aurora B. Annexin 11-depleted cells failed to complete cytokinesis and died by apoptosis. These findings demonstrate an essential role for annexin 11 in the terminal phase of cytokinesis.  相似文献   

3.
Whereas somatic cell cytokinesis resolves with abscission of the midbody, resulting in independent daughter cells, germ cell cytokinesis concludes with the formation of a stable intercellular bridge interconnecting daughter cells in a syncytium. While many proteins essential for abscission have been discovered, until recently, no proteins essential for mammalian germ cell intercellular bridge formation have been identified. Using TEX14 as a marker for the germ cell intercellular bridge, we show that TEX14 co-localizes with the centralspindlin complex, mitotic kinesin-like protein 1 (MKLP1) and male germ cell Rac GTPase-activating protein (MgcRacGAP) and converts these midbody matrix proteins into stable intercellular bridge components. In contrast, septins (SEPT) 2, 7 and 9 are transitional proteins in the newly forming bridge. In cultured somatic cells, TEX14 can localize to the midbody in the absence of other germ cell-specific factors, suggesting that TEX14 serves to bridge the somatic cytokinesis machinery to other germ cell proteins to form a stable intercellular bridge essential for male reproduction.  相似文献   

4.
During anaphase, the nonkinetochore microtubules in the spindle midzone become compacted into the central spindle, a structure which is required to both initiate and complete cytokinesis. We show that Tektin 2 (Tek2) associates with the spindle poles throughout mitosis, organizes the spindle midzone microtubules during anaphase, and assembles into the midbody matrix surrounding the compacted midzone microtubules during cytokinesis. Tek2 small interfering RNA (siRNA) disrupts central spindle organization and proper localization of MKLP1, PRC1, and Aurora B to the midzone and prevents the formation of a midbody matrix. Video microscopy revealed that loss of Tek2 results in binucleate cell formation by aberrant fusion of daughter cells after cytokinesis. Although a myosin II inhibitor, blebbistatin, prevents actin-myosin contractility, the microtubules of the central spindle are compacted. Strikingly, Tek2 siRNA abolishes this actin-myosin-independent midzone microtubule compaction. Thus, Tek2-dependent organization of the central spindle during anaphase is essential for proper midbody formation and the segregation of daughter cells after cytokinesis.  相似文献   

5.
Centromere-associated protein E (CENP-E) is a kinesin-related microtubule motor protein that is essential for chromosome congression during mitosis. Our previous studies show that microtubule motor CENP-E represents a link between attachment of spindle microtubules and the mitotic checkpoint signaling cascade. However, the molecular function of CENP-E at the midbody had remained elusive. Here we show that CENP-E interacts with Skp1 at the midbody and participates in cytokinesis. CENP-E interacts with Skp1 in vitro and in vivo via its coiled-coil domain. Our yeast two-hybrid assays mapped the binding interfaces to the central stalk region of CENP-E (955-1571 aa) and the C-terminal 33 amino acids of Skp1, respectively. Our immunocytochemical studies revealed that CENP-E targets to the midbody prior to Skp1 and the midbody localization of CENP-E becomes diminished as Skp1 arrives at the midbody. Suppression of Skp1 in mitotic HeLa cells by siRNA resulted in accumulation of telophase cells with elongated inter-cell bridges and with midbodies stretched 2-3 times longer than that of normal cells. These Skp1-eliminated or -suppressed cells accumulate higher level of CENP-E, suggesting that spatiotemporal regulation of CENP-E degradation at the midbody is essential for cytokinesis. Over-expression of Skp1 lacking the CENP-E-binding domain confirmed that Skp1-CENP-E interaction is essential for faithful cytokinesis. We hypothesize that CENP-E degradation is essential for faithful mitotic exit and the proteolysis of CENP-E is mediated by SCF via a direct Skp1 link.  相似文献   

6.
Cytokinesis is the final stage of cell division in which the daughter cells separate. Although a growing body of evidence suggests that cell migration-induced traction forces may be required to provide physical assistance for daughter cells to dissociate during abscission, the role of cell migration in cytokinesis has not been directly elucidated. Recently, we have demonstrated that Crk and paxillin, which are pivotal components of the cell migration machinery, localize to the midbody and are essential for the abscission. These findings provided an important link between the cell migration and cytokinesis machineries and prompted us to dissect the role of cell migration in cytokinesis. We show that cell migration controls the kinetics of cleavage furrowing, midbody extension and abscission and coordinates proper subcellular redistribution of Crk and syntaxin-2 to the midbody after ingression.Key words: cell migration, cytokinesis, midbody, abscission, cleavage furrow, Crk, paxillin, syntaxin-2, ExoT  相似文献   

7.
为探讨人源驱动蛋白MKLP1在有丝分裂和胞质分裂中的作用,以E.coliRNaseⅢ制备MKLP1的3′UTResiRNA转染HeLa细胞,通过定量RTPCR、Western印迹检测MKLP1esiRNA对MKLP1基因的沉默效率.再利用FACS分析、免疫荧光染色和活细胞成像分析检测MKLP1表达缺失后在有丝分裂和胞质分裂不同时期的细胞形态学、细胞分裂指数、细胞百分数,动态观察有丝分裂和胞质分裂期间的表型改变,以系统分析MKLP1的功能.最后通过挽救实验验证MKLP1esiRNA的作用特异性.实验显示MKLP1esiRNA转染HeLa细胞能够有效地特异性消除MKLP1的表达,并被异位表达的MKLP1所挽救.MKLP1蛋白在有丝分裂后期和末期前期位于纺锤体中间带,在末期后期和胞质分裂的最后阶段集中于中间体的中心处.MKLP1表达缺失使中间体正确形成和胞质分裂的完成受到严重抑制,造成大量双多核细胞堆积.结果表明,MKLP1在胞质分裂中间体形成和有丝分裂末期前期向后期过渡过程中起关键作用,是纺锤体中间体中间带相关蛋白,为胞质分裂所必需.  相似文献   

8.
Cytokinesis is the final step of cell division that completes the separation of two daughter cells. We found that the human discs large (hDlg) tumor suppressor homologue is functionally involved in cytokinesis. The guanylate kinase (GUK) domain of hDlg mediates the localization of hDlg to the midbody during cytokinesis, and over-expression of the GUK domain in U2OS and HeLa cells impaired cytokinesis. Mouse embryonic fibroblasts (MEFs) derived from dlg mutant mice contained an increased number of multinucleated cells and showed reduced proliferation in culture. A kinesin-like motor protein, GAKIN, which binds directly to the GUK domain of hDlg, exhibited a similar intracellular distribution pattern with hDlg throughout mitosis and localized to the midbody during cytokinesis. However, the targeting of hDlg and GAKIN to the midbody appeared to be independent of each other. The midbody localization of GAKIN required its functional kinesin-motor domain. Treatment of cells with the siRNA specific for hDlg and GAKIN caused formation of multinucleated cells and delayed cytokinesis. Together, these results suggest that hDlg and GAKIN play functional roles in the maintenance of midbody architecture during cytokinesis.  相似文献   

9.
During cytokinesis the actomyosin-based contractile ring is formed at the equator, constricted, and then disassembled prior to cell abscission. Cofilin stimulates actin filament disassembly and is implicated in the regulation of contractile ring dynamics. However, little is known about the mechanism controlling cofilin activity during cytokinesis. Cofilin is inactivated by phosphorylation on Ser-3 by LIM-kinase-1 (LIMK1) and is reactivated by a protein phosphatase Slingshot-1 (SSH1). Here we show that the phosphatase activity of SSH1 decreases in the early stages of mitosis and is elevated in telophase and cytokinesis in HeLa cells, a time course correlating with that of cofilin dephosphorylation. SSH1 co-localizes with F-actin and accumulates onto the cleavage furrow and the midbody. Expression of a phosphatase-inactive SSH1 induces aberrant accumulation of F-actin and phospho-cofilin near the midbody in the final stage of cytokinesis and frequently leads to the regression of the cleavage furrow and the formation of multinucleate cells. Co-expression of cofilin rescued the inhibitory effect of phosphatase-inactive SSH1 on cytokinesis. These results suggest that SSH1 plays a critical role in cytokinesis by dephosphorylating and reactivating cofilin in later stages of mitosis.  相似文献   

10.
Regulation of multiple cell cycle events by Cdc14 homologues in vertebrates   总被引:1,自引:0,他引:1  
Whereas early cytokinesis events have been relatively well studied, little is known about its final stage, abscission. The Cdc14 phosphatase is involved in the regulation of multiple cell cycle events, and in all systems studied Cdc14 misexpression leads to cytokinesis defects. In this work, we have cloned two CDC14 cDNA from Xenopus, including a previously unreported CDC14B homologue. We use Xenopus and human cell lines and demonstrate that localization of Cdc14 proteins is independent of both cell-type and species specificity. Ectopically expressed XCdc14A is centrosomal in interphase and localizes to the midbody in cytokinesis. By using XCdc14A misregulation, we confirm its control over different cell cycle events and unravel new functions during abscission. XCdc14A regulates the G1/S and G2/M transitions. We show that Cdc25 is an in vitro substrate for XCdc14A and might be its target at the G2/M transition. Upregulated wild-type or phosphatase-dead XCdc14A arrest cells in a late stage of cytokinesis, connected by thin cytoplasmic bridges. It does not interfere with central spindle formation, nor with the relocalization of passenger protein and centralspindlin complexes to the midbody. We demonstrate that XCdc14A upregulation prevents targeting of exocyst and SNARE complexes to the midbody, both essential for abscission to occur.  相似文献   

11.
Large tumor suppressor 1 and 2 (Lats1/2) regulate centrosomal integrity, chromosome segregation and cytokinesis. As components of the centralspindlin complex, the kinesin-like protein CHO1 and its splicing variant MKLP1 colocalize with chromosome passenger proteins and GTPases and regulate the formation of the contractile ring and cytokinesis; however, the regulatory mechanisms of CHO1/MKLP1 remain elusive. Here, we show that Lats1/2 phosphorylate Ser716 in the F-actin-interacting region of CHO1, which is absent in MKLP1. Phosphorylated CHO1 localized to the centrosomes and midbody, and the actin polymerization factor LIM-kinase 1 (LIMK1) was identified as its binding partner. Overexpression of constitutively phosphorylated and non-phosphorylated CHO1 altered the mitotic localization and activation of LIMK1 at the centrosomes in HeLa cells, leading to the inhibition of cytokinesis through excessive phosphorylation of Cofilin and mislocalization of Ect2. These results suggest that Lats1/2 stringently control cytokinesis by regulating CHO1 phosphorylation and the mitotic activation of LIMK1 on centrosomes.  相似文献   

12.
A role for Plk1 phosphorylation of NudC in cytokinesis   总被引:7,自引:0,他引:7  
Polo-like kinase 1 (Plk1) plays essential roles at multiple events during cell division, yet little is known about its physiological substrates. In a cDNA phage display screen using Plk1 C-terminal affinity columns, we identified NudC (nuclear distribution gene C) as a Plk1 binding protein. Here, we characterize the interaction between Plk1 and NudC, show that Plk1 phosphorylates NudC at conserved S274 and S326 residues in vitro, and present evidence that NudC is also a substrate for Plk1 in vivo. Downregulation of NudC by RNA interference results in multiple mitotic defects, including multinucleation and cells arrested at the midbody stage, which are rescued by ectopic expression of wild-type NudC, but not by NudC with mutations in the Plk1 phosphorylation sites. These results suggest that Plk1 phosphorylation of NudC may influence cytokinesis.  相似文献   

13.
Abscission completes cytokinesis to form the two daughter cells. Although abscission could be organized from the inside out by the microtubule-based midbody or from the outside in by the contractile ring–derived midbody ring, it is assumed that midbody microtubules scaffold the abscission machinery. In this paper, we assess the contribution of midbody microtubules versus the midbody ring in the Caenorhabditis elegans embryo. We show that abscission occurs in two stages. First, the cytoplasm in the daughter cells becomes isolated, coincident with formation of the intercellular bridge; proper progression through this stage required the septins (a midbody ring component) but not the membrane-remodeling endosomal sorting complex required for transport (ESCRT) machinery. Second, the midbody and midbody ring are released into a specific daughter cell during the subsequent cell division; this stage required the septins and the ESCRT machinery. Surprisingly, midbody microtubules were dispensable for both stages. These results delineate distinct steps during abscission and highlight the central role of the midbody ring, rather than midbody microtubules, in their execution.  相似文献   

14.
We report here an efficient functional genomic analysis by combining information on the gene expression profiling, cellular localization, and loss-of-function studies. Through this analysis, we identified Cep55 as a regulator required for the completion of cytokinesis. We found that Cep55 localizes to the mitotic spindle during prometaphase and metaphase and to the spindle midzone and the midbody during anaphase and cytokinesis. At the terminal stage of cytokinesis, Cep55 is required for the midbody structure and for the completion of cytokinesis. In Cep55-knockdown cells, the Flemming body is absent, and the structural and regulatory components of the midbody are either absent or mislocalized. Cep55 also facilitates the membrane fusion at the terminal stage of cytokinesis by controlling the localization of endobrevin, a v-SNARE required for cell abscission. Biochemically, Cep55 is a microtubule-associated protein that efficiently bundles microtubules. Cep55 directly binds to MKLP1 in vitro and associates with the MKLP1-MgcRacGAP centralspindlin complex in vivo. Cep55 is under the control of centralspindlin, as knockdown of centralspindlin abolished the localization of Cep55 to the spindle midzone. Our study defines a cellular mechanism that links centralspindlin to Cep55, which, in turn, controls the midbody structure and membrane fusion at the terminal stage of cytokinesis.  相似文献   

15.
Mitotic PtK1cells were treated both during mid-anaphase and at furrow initiation with the potent microtubule (MT) stabilizing agent, taxol, to determine the role of MTs in the rate of cytokinetic events. Rates of cytokinesis (μm/min) were measured by changes in furrow diameter. Incubation of PtK1cells during mid-anaphase with 5 μg/ml taxol slows the rate of cytokinesis by an average of 43%. Instead of furrow initiation to midbody formation taking an average of 10.7 min (1.6 μm/min), furrowing to midbody formation was completed in an average of 19.0 min (0.9 μm/min), which does not include the 7-min period between taxol application in mid-anaphase and furrow initiation. Application of 5 μg/ml taxol to cells at furrow initiation had a reduced effect on decreasing the rate of cytokinesis and midbody formation; furrowing to midbody formation took an average of 14.6 min (1.2 μm/min). These data suggest that delays in the rate of cytokinesis is dependent on the mitotic stage at which taxol is applied. Ultrastructural analysis shows that taxol treatment of anaphase cells prevents midbody formation during early G1, yet MT number and organization in the furrowed region is not significantly altered from untreated cells. There is little change in the organization and amount of contractile ring microfilaments, yet filaments are also found parallel to midbody MTs. Our results may be explained by the fact that taxol tends to stabilize MTs which probably affects the rate at which they depolymerize in the terminal phases of cytokinesis. Reduction in depolymerization rates of a stable population of MTs could serve to regulate the rate of cytokinesis.  相似文献   

16.
Cytokinesis partitions the cytoplasm of a parent cell into two daughter cells and is essential for the completion of cell division. The final step of cytokinesis in animal cells is abscission, which is a process leading to the physical separation of two daughter cells. Abscission requires membrane traffic and microtubule disassembly at a specific midbody region called the secondary ingression. Here, we report that WD repeat-containing protein 5 (WDR5), a core subunit of COMPASS/MLL family histone H3 lysine 4 methyltransferase (H3K4MT) complexes, resides at the midbody and associates with a subset of midbody regulatory proteins, including PRC1 and CYK4/MKLP1. Knockdown of WDR5 impairs abscission and increases the incidence of multinucleated cells. Further investigation revealed that the abscission delay is primarily due to slower formation of secondary ingressions in WDR5 knockdown cells. Consistent with these defects, midbody microtubules in WDR5 knockdown cells also display enhanced resistance to depolymerization by nocodazole. Recruitment of WDR5 to the midbody dark zone appears to require integrity of the WDR5 central arginine-binding cavity, as mutations that disrupt histone H3 and MLL1 binding to this pocket also abolish the midbody localization of WDR5. Taken together, these data suggest that WDR5 is specifically targeted to the midbody in the absence of chromatin and that it promotes abscission, perhaps by facilitating midbody microtubule disassembly.  相似文献   

17.
Failed cytokinesis leads to tetraploidy, which is an important intermediate preceding aneuploidy and the onset of tumorigenesis. The centrosome is required for the completion of cytokinesis through the transport of important components to the midbody; however, the identity of molecular components and the mechanism involved remains poorly understood. In this study, we report that the peptidyl prolyl isomerase cyclophilin A (cypA) is a centrosome protein that undergoes cell cycle-dependent relocation to the midzone and midbody during cytokinesis in Jurkat cells implicating a role during division. Depletion of cypA does not disrupt mitotic spindle formation or progression through anaphase; however, it leads to cytokinesis defects through an inability to resolve intercellular bridges, culminating in delayed or failed cytokinesis. Defective cytokinesis is also evident by an increased prevalence of midbody-arrested cells. Expression of wild-type cypA reverses the cytokinesis defect in knockout cells, whereas an isomerase mutant does not, indicating that the isomerisation activity of cypA is required for cytokinesis. In contrast, wild-type cypA and the isomerase mutant localize to the centrosome and midbody, suggesting that localization to these structures is independent of isomerase activity. Depletion of cypA also generates tetraploid cells and supernumerary centrosomes. Finally, colony formation in soft agar is impaired in cypA-knockout cells, suggesting that cypA confers clonogenic advantage on tumor cells. Collectively, this data reveals a novel role for cypA isomerase activity in the completion of cytokinesis and the maintenance of genome stability.  相似文献   

18.
CHO1 is a kinesin-like protein of the mitotic kinesin-like protein (MKLP)1 subfamily present in central spindles and midbodies in mammalian cells. It is different from other subfamily members in that it contains an extra approximately 300 bp in the COOH-terminal tail. Analysis of the chicken genomic sequence showed that heterogeneity is derived from alternative splicing, and exon 18 is expressed in only the CHO1 isoform. CHO1 and its truncated isoform MKLP1 are coexpressed in a single cell. Surprisingly, the sequence encoded by exon 18 possesses a capability to interact with F-actin, suggesting that CHO1 can associate with both microtubule and actin cytoskeletons. Microinjection of exon 18-specific antibodies did not result in any inhibitory effects on karyokinesis and early stages of cytokinesis. However, almost completely separated daughter cells became reunited to form a binulceate cell, suggesting that the exon 18 protein may not have a role in the formation and ingression of the contractile ring in the cortex. Rather, it might be involved directly or indirectly in the membrane events necessary for completion of the terminal phase of cytokinesis.  相似文献   

19.
Cytokinesis is asymmetric along the apical–basal axis of epithelial cells, positioning the midbody near the apical domain. However, little is known about the mechanism and purpose of this asymmetry. We use live imaging of Drosophila follicle cell division to show that asymmetric cytokinesis does not result from intrinsic polarization of the main contractile ring components. We show that adherens junctions (AJs) maintain close contact with the apical side of the contractile ring during cytokinesis. Asymmetric distribution of AJ components within follicle cells and in the otherwise unpolarized S2 cells is sufficient to recruit the midbody, revealing that asymmetric cytokinesis is determined by apical AJs in the epithelia. We further show that ectopic midbody localization induces epithelial invaginations, shifting the position of the apical interface between daughter cells relative to the AB axis of the tissue. Thus, apical midbody localization is essential to maintain epithelial tissue architecture during proliferation.  相似文献   

20.
Vinexin is a SH3 domain-containing adaptor protein that has diverse roles in cell adhesion, signal transduction, gene regulation and stress granule assembly. In this study, we found that vinexin localizes at the midbody during cell division and facilitates cytokinesis. Knockdown of vinexin in HeLa cells delayed the mitotic cell cycle progression and increased the time of cell abscission and the failure to resolve the cytoplasmic bridge. Midbody-localized vinexin is essential for recruiting rhotekin to this structure for cytokinesis because overexpression of a vinexin mutant without a rhotekin-binding motif or knockdown of rhotekin also impaired cytokinetic abscission and increased the number of cells arrested at the midbody stage. Aberrant expression of vinexin and rhotekin in various cancers has been implicated to promote metastasis because of their functions in cell adhesion and signaling. Our findings reveal a novel role of vinexin and rhotekin in cytokinetic abscission and provide another perspective of how both molecules may affect oncogenic transformation via this fundamental cell cycle process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号