首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, A2780 human ovarian carcinoma cells were grown in folinic acid in contrast to folic acid, and the molecular and biochemical properties of cisplatin-resistant A2780 cells were analyzed for changes in the dTMP synthase cycle. At concentrations of folinic acid that were optimal for cell growth (10(-8) M), the ED50 for cisplatin was 2.5 and 43 microM in the A2780S and A2780DDP cells, respectively. Resistance to cisplatin was associated with a 2-fold cross-resistance to 5-fluorodeoxyuridine and 5-fluorouracil as well as a 3-fold increase in both dTMP synthase activity and mRNA. The ED50 for methotrexate was similar in both A2780S and A2780DDP cells (1.2 microM). When both the A2780S and A2780DDP cells were grown in folinic acid, there was no significant difference in the level of dihydrofolate reductase activity. This data would suggest that cisplatin resistance is associated with changes in folate metabolism.  相似文献   

2.
Chkl的高表达可能是肿瘤对化疗药物的敏感性降低的重要因素之一,本研究的目的是观察siRNA干扰Chk1对人乳腺癌耐药细胞株MCF-7/adr(耐阿霉素)生长及细胞周期的影响,探讨Chk1在乳腺癌细胞耐药中的作用机制。采用RNAi技术抑制MCF-7/adr细胞中Chk1的表达。Westernblot检测转染前后细胞内Chk1蛋白表达情况,经阿霉素作用后,流式细胞术(FCM)检测其细胞周期分布及细胞凋亡率,MTT法检测细胞增殖。Western blot结果显示,Chk1 siRNA转染24h后,MCF-7/adr细胞中Chk1蛋白表达下降了67%,明显低于对照组和空载体转染组(P<0.05)。FCM法检测结果显示,同时,抑制Chk1的表达可解除阿霉素引起的G_2/M期阻滞;使阿霉素诱导的细胞凋亡率由转染前的(5.54±0.15)%上升到(22.24±0.13)%(P<0.05);在阿霉素浓度为0.4mg/L、4mg/L时,细胞的增殖活性分别下降13%、34%。提示siRNA干扰Chk1能够通过调控MCF-7/adr细胞周期及增殖从而增强乳腺癌细胞对阿霉素的敏感性,为临床上克服乳腺癌化疗耐药提供了新的作用靶点。  相似文献   

3.
This article describes a novel electrochemical technique for the real-time monitoring of changes in the behaviour of adherent human cells in vitro: i.e., a biosensor that combines a biological recognition mechanism with a physical transduction technique, described collectively as Oncoprobe. Confluent viable cells adherent to gold electrodes (sensors) modify the extracellular microenvironment at the cell:sensor interface to produce a change in the electrochemical potential compared to that measured in the absence of cells. The potential was measured as an open circuit potential (OCP) with respect to a saturated calomel reference in the bulk culture medium. Typical OCP values for confluent cultures of human breast carcinoma cells, 8701-BC, approximated -100 mV compared with cell-free values of approximately -15 mV. The OCP for 8701-BC cells was modified in response to temperature changes over the range 32 to 40 degrees C and also to treatments with phytohemagglutinin (PHA, 25 microg/mL), cycloheximide (30 microM) and interleukin-1 beta (IL-1, 0.5 ng/mL) over 24 h. Cultures of synovial fibroblasts also responded to the same treatments with similar responses, producing negative shifts in the OCP signal with PHA and IL-I, but a positive shift in OCP signal with cycloheximide, all relative to the untreated control cultures. From experimental data and theoretical considerations it is proposed that the cell-derived signals are mixed electrode potentials reflecting a "conditioned," more reducing environment at the cell:sensor interface. Only viable cells caused a negative shift in the OCP signal, this being lost when cells were rendered nonviable by formalin exposure. This technology appears unique in its ability to passively "listen in" on cell surface activities, suggesting numerous applications in the fields of drug discovery, chemotherapy, and cell behaviour.  相似文献   

4.
The adenosine triphosphate binding cassette (ABC)-transporter ABCC2 (MRP2/cMOAT) can mediate resistance against the commonly used anticancer drugs cisplatin and paclitaxel. To overcome the ABCC2-depending drug resistance, two specific anti-ABCC2 small interfering RNAs (siRNAs) were designed for transient triggering of the gene-silencing RNA interference (RNAi) pathway in the cisplatin-resistant human ovarian carcinoma cell line A2780RCIS. Since both siRNAs showed biological activity, for stable inhibition of ABCC2 a corresponding short hairpin RNA (shRNA)-encoding expression vector was designed. By treatment of A2780RCIS cells with this construct, the expressions of the targeted ABCC2 encoding mRNA and transport protein were inhibited. These effects were accompanied by reversal of resistance against cisplatin and paclitaxel. Thus, the data demonstrate the utility of the analyzed RNAs as powerful laboratory tools and indicate that siRNA- and shRNA-mediated RNAi-based gene therapeutic approaches may be applicable in preventing and reversing ABCC2-depending drug resistance.  相似文献   

5.
The anticancer properties of two new fluorescent platinum(II) compounds, cis-[Pt(A9opy)Cl2] and cis-[Pt(A9pyp)(dmso)Cl2] are described. These compounds are highly active against several human tumor cell lines, including human ovarian carcinoma sensitive and cisplatin-resistant cell lines (A2780 and A2780R). To study the cellular processing of these new compounds, a series of in vitro studies have been performed, including the investigation of intracellular platinum accumulation and DNA-platination experiments in A2780 and A2780R cells. Compared to cisplatin, both compounds are accumulated highly in both sensitive and resistant cell lines, and more platinum has been found to bind to the nuclear DNA. Interestingly, cis-[Pt(A9opy)Cl2] shows high accumulation and DNA adduct formation in the resistant cell line A2780R, as compared to the sensitive counterpart A2780 cell line. This suggests that cis-[Pt(A9opy)Cl2] is able to overcome some of the well-known resistance mechanisms in this cell line, such as decreased cellular uptake and increased DNA repair.  相似文献   

6.
Emerging evidence suggests that miR-143 plays an important role in the regulation of tumor sensitivity to chemotherapeutic agents. The study explores the underlying mechanism of miR-143 in reversing cisplatin resistance in ovarian cancer. The cisplatin-resistant ovarian cancer cell line A2780/CDDP was induced and established via treating A2780 cells by gradually increasing cisplatin concentrations. The IC50 values of A2780/CDDP and A2780 to cisplatin were 218.10 ± 1.12 and 21.99 ± 1.12 μM, respectively. Quantitative real-time polymerase chain reaction (qRT-PCR) results showed that miR-143 was significantly decreased in A2780/CDDP cells compared with A2780 cells. miR-143 overexpression decreased cisplatin resistance in A2780/CDDP, and miR-143 inhibition decreased A2780 sensitivity to cisplatin. Results of qRT-PCR, Western blot analysis, and luciferase reporter assay indicated that the direct target of miR-143 was DNMT3A, which, in turn, was upregulated in A2780/CDDP. DNMT3A overexpression antagonized the sensitizing effect of miR-143 on A2780/CDDP to cisplatin. Knocking down of DNMT3A reduced cisplatin resistance in A2780/CDDP, while overexpression of DNMT3A increased cisplatin resistance in A2780. Methylation-specific polymerase chain reaction results showed that the methylation level in the promoter region of the miR-143 precursor gene was higher in A2780/CDDP cells than in A2780 cells. DNMT3A mediated the hypermethylation of the miR-143 precursor gene, resulting in miR-143 downregulation in A2780/CDDP. miR-143 inhibited cell growth of A2780/CDDP cell in nude mice. Our findings indicated the negative feedback between miR-143 and DNMT3A as a crucial epigenetic modifier of cisplatin resistance in ovarian cancer.  相似文献   

7.
A series of new generation taxoids bearing a bulky group on different positions such as C-2, C-5, C-7, C-9, C-10 or C-14 were obtained by chemical modifications and biotransformation of taxuyunnanine C (1) and its analogs, 4, 5, and 10. Compounds 3, 5, 6, 8, and 9a showed significant activity toward calcein accumulation in MDR 2780AD cells. The most effective compound 9a with a cinnamoyloxy group at C-14 and a hydroxyl group at C-10 was actually efficient for the cellular accumulation of the anticancer agent, vincristine, in MDR 2780AD cells. The enhancing effects of 6 and 9a for taxol, adriamycin, and vincristine were at the same levels as those of verapamil toward MDR 2780AD cells. Thus, compounds 6 and 9a can modulate the multidrug resistance of cancer cells. The cytotoxicity (IC(50)) of the compounds was examined against human normal cell line, WI-38, and cancer model cell lines, VA-13 and HepG2. Since compounds 6 and 8 had no cytotoxicity, they were expected to be lead compounds of MDR cancer reversal agents. On the contrary, compounds 3, 5, and 9a showed cell growth inhibitory activity toward VA-13 and/or HepG2 as well as accumulation activity of calcein and/or vincristine in MDR 2780AD and they were expected to be lead compounds of new-type anticancer agents.  相似文献   

8.
化学疗法为肿瘤临床治疗的常规方法,存在毒副作用大、抗药性强等缺陷。为了提高药物的利用效率,减少药物引起的毒副作用,将8.8 m T稳恒磁场分别与顺铂、阿霉素联用,经MTT检测发现磁场与药物联用可对肝癌细胞Hepa1-6生长具有协同抑制的效应,经HE染色发现联合处理组细胞发生明显的形态学改变。流式细胞仪检测显示磁场能增加顺铂对G2/M期细胞的滞留,而磁场与阿霉素共同作用可将细胞阻止于G1期和G2/M期。经彗星电泳检测表明磁场能够增强药物对DNA的损伤,且原子力显微镜观察发现联合处理组细胞膜表面出现较大且较深的孔洞,表面结构破坏严重。实验结果表明,抗肿瘤药物与磁场联用技术可有效抑制肿瘤细胞的生长,减少药物的使用浓度,为将抗肿瘤药物与磁场应用于临床治疗恶性肿瘤提供了一个全新的思路与策略。  相似文献   

9.
10.
11.
1H high resolution magic angle spinning (HR-MAS) NMR spectroscopy was applied in combination with multivariate statistical analyses to study the metabolic response of whole cells to the treatment with a hexacationic ruthenium metallaprism [1]6+ as potential anticancer drug. Human ovarian cancer cells (A2780), the corresponding cisplatin resistant cells (A2780cisR), and human embryonic kidney cells (HEK-293) were each incubated for 24 h and 72 h with [1]6+ and compared to untreated cells. Different responses were obtained depending on the cell type and incubation time. Most pronounced changes were found for lipids, choline containing compounds, glutamate and glutathione, nucleotide sugars, lactate, and some amino acids. Possible contributions of these metabolites to physiologic processes are discussed. The time-dependent metabolic response patterns suggest that A2780 cells on one hand and HEK-293 cells and A2780cisR cells on the other hand may follow different cell death pathways and exist in different temporal stages thereof.  相似文献   

12.
Traditional remedies have a long-standing history in Cameroon and continue to provide useful and applicable tools for treating ailments. Here, the anticancer, antimicrobial and antioxidant activities of ten antioxidant-rich Cameroonian medicinal plants and of some of their isolated compounds are evaluated.The plant extracts were prepared by maceration in organic solvents. Fractionation of plant extract was performed by column chromatography and the structures of isolated compounds (emodin, 3-geranyloxyemodin, 2-geranylemodin) were confirmed spectroscopically. The antioxidant activity (AOA) was determined using the 1,1-diphenyl-2-picrylhydrazyl (DPPH) bleaching method, the trolox equivalent antioxidant capacity (TEAC), and the hemoglobin ascorbate peroxidase activity inhibition (HAPX) assays. The anticancer activity was evaluated against A431 squamous epidermal carcinoma, WM35 melanoma, A2780 ovary carcinoma and cisplatin-resistant A2780cis cells, using a direct colorimetric assay. The total phenolic content in the extracts was determined spectrophotometrically by the Folin–Ciocalteu method. Rumex abyssinicus showed the best AOA among the three assays employed. The AOA of emodin was significantly higher than that of 3-geranyloxyemodin and 2-geranylemodin for both TEAC and HAPX methods. The lowest IC50 values (i.e., highest cytotoxicity) were found for the extracts of Vismia laurentii, Psorospermum febrifugum, Pentadesma butyracea and Ficus asperifolia. The Ficus asperifolia and Psorospermum febrifugum extracts are selective against A2780cis ovary cells, a cell line which is resistant to the standard anticancer drug cisplatin. Emodin is more toxic compared to the whole extract, 3-geranyloxyemodin and 2-geranylemodin. Its selectivity against the platinum-resistant A2780cis cell line is highest. All of the extracts display antimicrobial activity, in some cases comparable to that of gentamycin.  相似文献   

13.
Drug resistance to chemotherapy occurs in many ovarian cancer patients resulting in failure of treatment. Exploration of drug resistance mechanisms and identification of new therapeutics that overcome the drug resistance can improve patient prognosis. Following a quantitative combination screen of 6060 approved drugs and bioactive compounds in a cisplatin-resistant A2780-cis ovarian cancer cell line, 38 active compounds with IC50s under 1 μM suppressed the growth of cisplatin-resistant ovarian cancer cells. Among these confirmed compounds, CUDC-101, OSU-03012, oligomycin A, VE-821, or Torin2 in a combination with cisplatin restored cisplatin's apoptotic response in the A2780-cis cells, while SR-3306, GSK-923295, SNX-5422, AT-13387, and PF-05212384 directly suppressed the growth of A2780-cis cells. One of the mechanisms for overcoming cisplatin resistance in these cells is mediated by the inhibition of epidermal growth factor receptor (EGFR), though not all the EGFR inhibitors are equally active. The increased levels of total EGFR and phosphorylated-EGFR (p-EGFR) in the A2780-cis cells were reduced after the combined treatment of cisplatin with EGFR inhibitors. In addition, a knockdown of EGFR mRNA reduced cisplatin resistance in the A2780-cis cells. Therefore, the top active compounds identified in this work can be studied further as potential treatments for cisplatin-resistant ovarian cancer. The quantitative combinational screening approach is a useful method for identifying effective compounds and drug combinations against drug-resistant cancer cells.  相似文献   

14.
Cell viability assays are important tools in oncological research and clinical practice to assess the tumor cell sensitivity of individual patients. The purpose of this study was to demonstrate the comparability of 3 widely used assays (MTT, ATP, calcein assays) by principal component analysis. The study included 4 different cytostatics (cisplatin, docetaxel, doxorubicin, vinblastine) and 3 different human cancer cell lines (MCF-7, A2780, doxorubicin resistant A2780adr). Ninety-three percent of the total variance of all variables included in the principal component analysis (resulting from 3 cell lines and 3 assays) could be explained by 1 principal component. Factor loadings were > 0.937 except for the variable MTT-A2780adr, which was 0.872. These results indicate the similarity of the 3 assays. A 2nd principal component analysis included literature data and showed accordance of data from this study and the literature. The MTT assay was further improved as a high-throughput screening-capable assay. The ATP assay is able to detect effects of cytostatics already after 1 h incubation. The determination of resistance factors allowed to differentiate cytostatics into P-gp or non-P-gp substrates. In conclusion, this study provides improved microplate reader-based cell viability assays and sets a statistically solid basis for a future comparison of data obtained in different laboratories by any of the 3 assays.  相似文献   

15.
Novel C-seco-taxoids were synthesized from 10-deacetylbaccatin III and their potencies evaluated against drug-sensitive and drug-resistant cancer cell lines. The drug-resistant cell lines include ovarian cancer cell lines resistant to cisplatin, topotecan, adriamycin and paclitaxel overexpressing class III β-tubulin, A2780TC1 and A2780TC3. The last two cell lines were selected through chronic exposure of A2780wt to paclitaxel and Pgp blocker cyclosporine. All novel C-seco-taxoids exhibited remarkable potency against A2780TC1 and A2780TC3 cell lines, and no cross resistance to cisplatin- and topotecan-resistant cell lines, A2780CIS and A2780TOP. Four of those C-seco-taxoids exhibit much higher activities than IDN5390 against paclitaxel-resistant cell lines, A2780ADR, A2780TC1 and A2780TC3. SB-CST-10202 possesses the best all-round high potencies across different drug-resistant cell lines. Molecular modeling studies, including molecular dynamics simulations, on the drug-protein complexes of class I and III β-tubulins were performed to identify possible cause of the remarkable potency of these C-seco-taxoids against paclitaxel-resistant cell lines overexpressing class III β-tubulin.  相似文献   

16.
17.
Prolonged wild-type p53 protein accumulation and cisplatin resistance   总被引:2,自引:0,他引:2  
The major limitation for the chemotherapeutic use of DNA-damaging agent cisplatin is the development of resistance in initially responsive tumors. One of the main pathways regulating cell survival following DNA damage is the p53 pathway. In this study we compared the cisplatin-induced response of p53 protein and its downstream targets p21WAF-1 and Mdm2 in the cisplatin-sensitive ovarian carcinoma cell line A2780 and its cisplatin-resistant derivative CP70. A higher dose of cisplatin and a longer exposure time was required to achieve the same level of p53, p21WAF-1, and Mdm2 protein accumulation in the cisplatin-resistant CP70 cells versus cisplatin-sensitive A2780 cells. A significant difference between the two cell lines was observed in cisplatin-induced stabilization of p53 protein. The p53 half-life increased 31-fold in CP70 cells compared to only 6-fold in A2780 cells. In contrast, there was no difference in p21WAF-1 half-life between the two cell lines. These results demonstrate that in A2780 and CP70 cells resistance to cisplatin correlates with prolonged p53 protein stabilization and accumulation.  相似文献   

18.
Lespedeza cuneata (Dum. Cours.) G. Don. (Fabaceae), known as Chinese bushclover or sericea lespedeza, has been used in traditional medicine to treat diabetes, hematuria, and insomnia, and it has been reported that bioactive compounds from L. cuneata possess various pharmacological properties. However, there has been no study to determine the active compounds from L. cuneata with potential activity against ovarian cancer. This study aimed to isolate cytotoxic compounds from L. cuneata and identify the molecular mechanisms underlying the apoptosis pathway in ovarian cancer cells. Based on cytotoxic activity identified in the screening test, chemical investigation of the active fraction of L. cuneata led to the isolation of nine compounds including four lignanosides (14), three flavonoid glycosides (57), and two phenolics (89). Cytotoxicity and the molecular mechanism were examined by methyl thiazolyl tetrazolium (MTT) assay and Western blot analysis. Of the isolated compounds, (?)-9′-O-(α-l-rhamnopyranosyl)lyoniresinol (3) demonstrated the strongest effect in suppressing A2780 human ovarian carcinoma cell proliferation in a dose-dependent manner, with an IC50 value of 35.40?±?2.78?μM. Control A2780 cells had normal morphology, whereas cell blebbing, shrinkage, and condensation were observed after treatment with compound 3. Western blotting analysis showed that compound 3 inhibited A2780 human ovarian cancer cell viability by activating caspase-8, caspase-3, and PARP, which contributed to apoptotic cell death. These results suggest that (?)-9′-O-(α-l-rhamnopyranosyl)lyoniresinol (3) has potent anticancer activities against A2780 human ovarian carcinoma cells through the extrinsic apoptotic pathway. Therefore, (?)-9′-O-(α-l-rhamnopyranosyl)lyoniresinol is an excellent candidate for the development of novel chemotherapeutics.  相似文献   

19.
The early changes in the energetics of T47D-clone 11 human breast cancer cells, following treatment with adriamycin and several other anti-cancer drugs were characterized by 31P- and 13C-NMR spectroscopy. Treatment of the cells with cytotoxic doses of either adriamycin (10(-5) M), daunomycin (10(-5) M) or actinomycin-D (2 x 10(-6) M) induced an immediate increase in the content of the nucleoside triphosphate (NTP) pool. A maximum increase of 30 to 50% was reached 6 to 8 h after treatment, and was followed by a gradual decrease, in accord with the decline in cell number due to cell death. High-performance liquid chromatography measurements indicated that the adriamycin-induced build-up of the NTP pool was mainly due to a specific increase in ATP and GTP. Treatment with cytotoxic doses of cytosine arabinofuranoside (10(-4) M) and cis-platin (10(-4) M) and with the antiestrogen tamoxifen at a dose which inhibited growth (2 x 10(-6) M) did not induce an early increase in the NTP content. Adriamycin and actinomycin-D did not alter significantly the rates of glucose consumption and lactate production via glycolysis during the first 4 to 8 h of treatment. Both drug, however, caused during this time interval a 50% inhibition in the rate of glutamate synthesis via the Krebs cycle. Complementary flow cytometry studies have indicated that within 4 h of treatment with either adriamycin or actinomycin-D there is no detectable change in cell cycle distribution. Treatment for longer time periods indicated that each drug affects the cell cycle distribution in a different manner. Thus, the early increase in NTP can not be associated with a specific cell cycle distribution. The results suggest therefore that drugs of the anthracycline and actinomycin type exert a similar specific and early metabolic induction which may affect the energy state of the cells. This induction may relate to the cytotoxic mechanism and could potentially serve as an early marker for response to treatment.  相似文献   

20.
Drug resistance of cancer cells is often correlated with the evasion of apoptosis, thus a major goal in cancer research is to search for compounds able to counteract cancer by promoting apoptosis. A variety of compounds with anticancer activity are characterised by the presence of the pyrazole as core nucleus. We synthesised a panel of pyrrolyl-pyrazole-carboxamides and we focused on the new compound RS 2780 (N-2-phenylethyl 1-(4-chlorophenyl)-3-methyl-5-pyrrolylpyrazole-4-carboxamide). The biological effects of RS 2780 on cell proliferation and viability were first evaluated on human HeLa cancer cells. As revealed by cell growth and viability experiments, a 24-h treatment of HeLa cells with increasing concentrations of RS 2780 (ranging from 0.1 to 100 μM) proved to inhibit cell proliferation and to affect cell viability. Notably, the new compound was effective also on colon carcinoma SW613-B3 cells, which are extremely resistant to most drugs, while it does not alter the proliferation of normal fibroblasts. We observed that RS 2780 interferes with the structural and functional properties of mitochondria, leading to the activation of the mitochondria-dependent apoptotic pathway. Apoptosis occurrence was supported by a number of morphological and biochemical hallmarks, including chromatin condensation, internucleosomal DNA fragmentation, PARP-1 cleavage and caspase activation. In conclusion, our results demonstrate for the first time the antiproliferative properties of the new compound RS 2780 on HeLa and SW613-B3 cancer cells and show that its effects on mitochondria lead to apoptosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号