共查询到20条相似文献,搜索用时 0 毫秒
1.
Membrane fusion reactions have been considered to be primarily regulated by Rab GTPases. In the model system of homotypic vacuole fusion in the yeast Saccharomyces cerevisiae, we show that Cdc42p, a member of the Rho family of GTPases, has a direct role in membrane fusion. Genetic evidence suggested a relationship between Cdc42p and Vtc1p/Nrf1p, a central part of the vacuolar membrane fusion machinery. Vacuoles from cdc42 temperature-sensitive mutants are deficient for fusion at the restrictive temperature. Specific amino acid changes on the Cdc42p protein surface in these mutants define the putative interaction domain that is crucial for its function in membrane fusion. Affinity-purified antibodies to this domain inhibited the in vitro fusion reaction. Using these antibodies in kinetic analyses and assays for subreactions of the priming, docking and post-docking phase of the reaction, we show that Cdc42p action follows Ypt7p-dependent tethering, but precedes the formation of trans-SNARE complexes. Thus, our data define an effector binding domain of Cdc42p by which it regulates the docking reaction of vacuole fusion. 相似文献
2.
Vacuole tethering, docking, and fusion proteins assemble into a "vertex ring" around the apposed membranes of tethered vacuoles before catalyzing fusion. Inhibitors of the fusion reaction selectively interrupt protein assembly into the vertex ring, establishing a causal assembly hierarchy: (a) The Rab GTPase Ypt7p mediates vacuole tethering and forms the initial vertex ring, independent of t-SNAREs or actin; (b) F-actin disassembly and GTP-bound Ypt7p direct the localization of other fusion factors; (c) The t-SNAREs Vam3p and Vam7p regulate each other's vertex enrichment, but do not affect Ypt7p localization. The v-SNARE Vti1p is enriched at vertices by a distinct pathway that is independent of the t-SNAREs, whereas both t-SNAREs will localize to vertices when trans-pairing of SNAREs is blocked. Thus, trans-SNARE pairing is not required for SNARE vertex enrichment; and (d) The t-SNAREs regulate the vertex enrichment of both G-actin and the Ypt7p effector complex for homotypic fusion and vacuole protein sorting (HOPS). In accord with this hierarchy concept, the HOPS complex, at the end of the vertex assembly hierarchy, is most enriched at those vertices with abundant Ypt7p, which is at the start of the hierarchy. Our findings provide a unique view of the functional relationships between GTPases, SNAREs, and actin in membrane fusion. 相似文献
3.
Vacuoles are essential pleomorphic organelles that undergo dynamic changes during cell growth and differentiation in plants. How developmental signals are linked to vacuole biogenesis and development is poorly understood. In this report, we show that a Rop GTPase is localized to developing vacuoles in pea (Pisum sativum cv Extra Early Alaska). Rop belongs to the RHO family of Ras-related small GTP-binding proteins that are key molecular switches in a wide variety of eukaryotic signal transduction pathways. Using indirect immunofluorescence and an anti-Rop antibody, we showed that Rop proteins accumulate to high levels in rapidly growing tapetal cells of pea anthers. In these cells, Rop is localized to an endomembrane system that exists as dynamic pleomorphic networks: a perinuclear fine network decorated with punctate dots, a network composed of small spheres and tubules, and interconnected chambers. Colocalization with a tonoplast annexin VCaB42 shows that these dynamic networks represent the tonoplast. Our results suggest that the dynamic Rop-containing tonoplast networks represent a unique stage of vacuole development. The specific localization of Rop to developing vacuoles supports a role for Rop in signal transduction that mediates vacuole development in plants. 相似文献
4.
Mayer A Scheglmann D Dove S Glatz A Wickner W Haas A 《Molecular biology of the cell》2000,11(3):807-817
Yeast vacuoles undergo cycles of fragmentation and fusion as part of their transmission to the daughter cell and in response to changes of nutrients and the environment. Vacuole fusion can be reconstituted in a cell free system. We now show that the vacuoles synthesize phosphoinositides during in vitro fusion. Of these phosphoinositides, phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate (PI(4,5)P(2)) are important for fusion. Monoclonal antibodies to PI(4,5)P(2), neomycin (a phosphoinositide ligand), and phosphatidylinositol-specific phospholipase C interfere with the reaction. Readdition of PI(4, 5)P(2) restores fusion in each case. Phosphatidylinositol 3-phosphate and PI(3,5)P(2) synthesis are not required. PI(4,5)P(2) is necessary for priming, i.e., for the Sec18p (NSF)-driven release of Sec17p (alpha-SNAP), which activates the vacuoles for subsequent tethering and docking. Therefore, it represents the kinetically earliest requirement identified for vacuole fusion so far. Furthermore, PI(4,5)P(2) is required at a step that can only occur after docking but before the BAPTA sensitive step in the latest stage of the reaction. We hence propose that PI(4,5)P(2) controls two steps of vacuole fusion. 相似文献
5.
Membrane fusion and protein trafficking to the vacuole are complex processes involving many proteins and lipids. Cytosol from Saccharomyces cerevisiae contains a high Mr activity, which stimulates the in vitro homotypic fusion of isolated yeast vacuoles. Here we purify this activity and identify it as enolase (Eno1p and Eno2p). Enolase is a cytosolic glycolytic enzyme, but a small portion of enolase is bound to vacuoles. Recombinant Eno1p or Eno2p stimulates in vitro vacuole fusion, as does a catalytically inactive mutant enolase, suggesting a role for enolase in fusion that is separate from its glycolytic function. Either deletion of the non-essential ENO1 gene or diminished expression of the essential ENO2 gene causes vacuole fragmentation in vivo, reflecting reduced fusion. Combining an ENO1 deletion with ENO2-deficient expression causes a more severe fragmentation phenotype. Vacuoles from enolase 1 and 2-deficient cells are unable to fuse in vitro. Immunoblots of vacuoles from wild type and mutant strains reveal that enolase deficiency also prevents normal protein sorting to the vacuole, exacerbating the fusion defect. Band 3 has been shown to bind glycolytic enzymes to membranes of mammalian erythrocytes. Bor1p, the yeast band 3 homolog, localizes to the vacuole. Its loss results in the mislocalization of enolase and other vacuole fusion proteins. These studies show that enolase stimulates vacuole fusion and that enolase and Bor1p regulate selective protein trafficking to the vacuole. 相似文献
6.
Rohde J Dietrich L Langosch D Ungermann C 《The Journal of biological chemistry》2003,278(3):1656-1662
It is presently not clear how the function of SNARE proteins is affected by their transmembrane domains. Here, we analyzed the role of the transmembrane domain of the vacuolar SNARE Vam3 by replacing it by a lipid anchor. Vacuoles with mutant Vam3 fuse poorly and have increased amounts of cis-SNARE complexes, indicating that they are more stable. As a consequence efficient cis-SNARE complex disassembly that occurs at priming as a prerequisite of fusion requires addition of exogenous Sec18. trans-SNARE complexes in this mutant accumulate up to 4-fold over wild type, suggesting that the transmembrane domain of Vam3 is required to transit through this step. Finally, palmitoylation of Vac8, a reaction that also occurs early during priming is reduced by almost one-half. Since palmitoylated Vac8 is required beyond trans-SNARE complex formation, this may partially explain the fusion deficiency. 相似文献
7.
Aliaksandr Khaminets Julia P. Hunn Stephanie Könen‐Waisman Yang O. Zhao Daniela Preukschat Jörn Coers Jon P. Boyle Yi‐Ching Ong John C. Boothroyd Gabriela Reichmann Jonathan C. Howard 《Cellular microbiology》2010,12(7):939-961
The immunity‐related GTPases (IRGs) constitute an interferon‐induced intracellular resistance mechanism in mice against Toxoplasma gondii. IRG proteins accumulate on the parasitophorous vacuole membrane (PVM), leading to its disruption and to death of the parasite. How IRGs target the PVM is unknown. We show that accumulation of IRGs on the PVM begins minutes after parasite invasion and increases for about 1 h. Targeting occurs independently of several signalling pathways and the microtubule network, suggesting that IRG transport is diffusion‐driven. The intensity of IRG accumulation on the PVM, however, is reduced in absence of the autophagy regulator, Atg5. In wild‐type cells IRG proteins accumulate cooperatively on PVMs in a definite order reflecting a temporal hierarchy, with Irgb6 and Irgb10 apparently acting as pioneers. Loading of IRG proteins onto the vacuoles of virulent Toxoplasma strains is attenuated and the two pioneer IRGs are the most affected. The polymorphic rhoptry kinases, ROP16, ROP18 and the catalytically inactive proteins, ROP5A–D, are not individually responsible for this effect. Thus IRG proteins protect mice against avirulent strains of Toxoplasma but fail against virulent strains. The complex cooperative behaviour of IRG proteins in resisting Toxoplasma may hint at undiscovered complexity also in virulence mechanisms. 相似文献
8.
Homotypic yeast vacuole fusion occurs in three stages: (i) priming reactions, which are independent of vacuole clustering, (ii) docking, in which vacuoles cluster and accumulate fusion proteins and fusion regulatory lipids at a ring-shaped microdomain surrounding the apposed membranes of each docked vacuole, where fusion will occur, and (iii) bilayer fusion/compartment mixing. These stages require vacuolar SNAREs, SNARE-chaperones, GTPases, effector complexes, and chemically minor but functionally important lipids. For each, we have developed specific ligands that block fusion and conditions that reverse each block. Using them, we test whether docking entails a linearly ordered series of catalytic events, marked by sequential acquisition of resistance to inhibitors, or whether docking subreactions are cooperative and/or reversible. We find that each fusion protein and regulatory lipid is needed throughout docking, indicative of a reversible or highly cooperative assembly of the fusion-competent vertex ring. In accord with this cooperativity, vertices enriched in one fusion catalyst are enriched in others. Docked vacuoles finally assemble SNARE complexes, yet still require physiological temperature and lipid rearrangements to complete fusion. 相似文献
9.
Membrane fusion requires priming, the disassembly of cis-SNARE complexes by the ATP-driven chaperones Sec18/17p. Yeast vacuole priming releases Vam7p, a soluble SNARE. Vam7p reassociation during docking allows trans-SNARE pairing and fusion. We now report that recombinant Vam7p (rVam7p) enters into complex with other SNAREs in vitro and bypasses the need for Sec17p, Sec18p, and ATP. Thus, the sole essential function of vacuole priming in vitro is the release of Vam7p from cis-SNARE complexes. In 'bypass fusion', without ATP but with added rVam7p, there are sufficient unpaired vacuolar SNAREs Vam3p, Vti1p, and Nyv1p to interact with Vam7p and support fusion. However, active SNARE proteins are not sufficient for bypass fusion. rVam7p does not bypass requirements for Rho GTPases,Vps33p, Vps39p, Vps41p, calmodulin, specific lipids, or Vph1p, a subunit of the V-ATPase. With excess rVam7p, reduced levels of PI(3)P or functional Ypt7p suffice for bypass fusion. High concentrations of rVam7p allow the R-SNARE Ykt6p to substitute for Nyv1p for fusion; this functional redundancy among vacuole SNAREs may explain why nyv1delta strains lack the vacuole fragmentation seen with mutants in other fusion catalysts. 相似文献
10.
Wang CW Stromhaug PE Kauffman EJ Weisman LS Klionsky DJ 《The Journal of cell biology》2003,163(5):973-985
The function of the yeast lysosome/vacuole is critically linked with the morphology of the organelle. Accordingly, highly regulated processes control vacuolar fission and fusion events. Analysis of homotypic vacuole fusion demonstrated that vacuoles from strains defective in the CCZ1 and MON1 genes could not fuse. Morphological evidence suggested that these mutant vacuoles could not proceed to the tethering/docking stage. Ccz1 and Mon1 form a stable protein complex that binds the vacuole membrane. In the absence of the Ccz1-Mon1 complex, the integrity of vacuole SNARE pairing and the unpaired SNARE class C Vps/HOPS complex interaction were both impaired. The Ccz1-Mon1 complex colocalized with other fusion components on the vacuole as part of the cis-SNARE complex, and the association of the Ccz1-Mon1 complex with the vacuole appeared to be regulated by the class C Vps/HOPS complex proteins. Accordingly, we propose that the Ccz1-Mon1 complex is critical for the Ypt7-dependent tethering/docking stage leading to the formation of a trans-SNARE complex and subsequent vacuole fusion. 相似文献
11.
Yeast vacuoles undergo fission and homotypic fusion, yielding one to three vacuoles per cell at steady state. Defects in vacuole fusion result in vacuole fragmentation. We have screened 4828 yeast strains, each with a deletion of a nonessential gene, for vacuole morphology defects. Fragmented vacuoles were found in strains deleted for genes encoding known fusion catalysts as well as 19 enzymes of lipid metabolism, 4 SNAREs, 12 GTPases and GTPase effectors, 9 additional known vacuole protein-sorting genes, 16 protein kinases, 2 phosphatases, 11 cytoskeletal proteins, and 28 genes of unknown function. Vacuole fusion and vacuole protein sorting are catalyzed by distinct, but overlapping, sets of proteins. Novel pathways of vacuole priming and docking emerged from this deletion screen. These include ergosterol biosynthesis, phosphatidylinositol (4,5)-bisphosphate turnover, and signaling from Rho GTPases to actin remodeling. These pathways are supported by the sensitivity of the late stages of vacuole fusion to inhibitors of phospholipase C, calcium channels, and actin remodeling. Using databases of yeast protein interactions, we found that many nonessential genes identified in our deletion screen interact with essential genes that are directly involved in vacuole fusion. Our screen reveals regulatory pathways of vacuole docking and provides a genomic basis for studies of this reaction. 相似文献
12.
The docking stage of yeast vacuole fusion requires the transfer of proteins from a cis-SNARE complex to a Rab/Ypt protein 总被引:6,自引:0,他引:6
The homotypic fusion of yeast vacuoles requires Sec18p (NSF)-driven priming to allow vacuole docking, but the mechanism that links priming and docking is unknown. We find that a large multisubunit protein called the Vam2/6p complex is bound to cis-paired SNAP receptors (SNAREs) on isolated vacuoles. This association of the Vam2/6p complex with the cis-SNARE complex is disrupted during priming. The Vam2/6p complex then binds to Ypt7p, a guanosine triphosphate binding protein of the Rab family, to initiate productive contact between vacuoles. Thus, cis-SNARE complexes can contain Rab/Ypt effectors, and these effectors can be mobilized by NSF/Sec18p-driven priming, allowing their direct association with a Rab/Ypt protein to activate docking. 相似文献
13.
Vam2p/Vps41p is known to be required for transport vesicles with vacuolar cargo to bud from the Golgi. Like other VAM-encoded proteins, which are needed for homotypic vacuole fusion, we now report that Vam2p and its associated protein Vam6p/Vps39p are needed on each vacuole partner for homotypic fusion. In vitro vacuole fusion occurs in successive steps of priming, docking, and membrane fusion. While priming does not require Vam2p or Vam6p, the functions of these two proteins cannot be fulfilled until priming has occurred, and each is required for the docking reaction which culminates in trans-SNARE pairing. Consistent with their dual function in Golgi vesicle budding and homotypic fusion of vacuoles, approximately half of the Vam2p and Vam6p of the cell are recovered from cell lysates with purified vacuoles. 相似文献
14.
The homotypic fusion of yeast vacuoles requires the Rab-family GTPase Ypt7p and its effector complex, homotypic fusion and vacuole protein sorting complex (HOPS). Although the vacuolar kinase Yck3p is required for the sensitivity of vacuole fusion to proteins that regulate the Rab GTPase cycle-Gdi1p (GDP-dissociation inhibitor [GDI]) or Gyp1p/Gyp7p (GTPase-activating protein)-this kinase phosphorylates HOPS rather than Ypt7p. We addressed this puzzle in reconstituted proteoliposome fusion reactions with all-purified components. In the presence of HOPS and Sec17p/Sec18p, there is comparable fusion of 4-SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteoliposomes when they have Ypt7p bearing either GDP or GTP, a striking exception to the rule that only GTP-bound forms of Ras-superfamily GTPases have active conformations. However, the phosphorylation of HOPS by recombinant Yck3p confers a strict requirement for GTP-bound Ypt7p for binding phosphorylated HOPS, for optimal membrane tethering, and for proteoliposome fusion. Added GTPase-activating protein promotes GTP hydrolysis by Ypt7p, and added GDI captures Ypt7p in its GDP-bound state during nucleotide cycling. In either case, the net conversion of Ypt7:GTP to Ypt7:GDP has no effect on HOPS binding or activity but blocks fusion mediated by phosphorylated HOPS. Thus guanine nucleotide specificity of the vacuolar fusion Rab Ypt7p is conferred through downstream posttranslational modification of its effector complex. 相似文献
15.
Synaptic vesicle docking and fusion. 总被引:3,自引:0,他引:3
S M Bajjalieh 《Current opinion in neurobiology》1999,9(3):321-328
Neurotransmitter secretion shares many features with constitutive membrane trafficking. In both cases, vesicles are targeted to a specific acceptor membrane and fuse via a series of protein-protein interactions. Recent work has added to the list of protein complexes involved and is beginning to define the order in which they act. The rapid fusion, precise regulation and plasticity characteristic of synaptic exocytosis probably results from the addition of specialized regulators. 相似文献
16.
Vam7p, a vacuolar SNAP-25 homolog, is required for SNARE complex integrity and vacuole docking and fusion. 总被引:10,自引:2,他引:10 下载免费PDF全文
The vacuole v-t-SNARE complex is disassembled by Sec17p/alpha-SNAP and Sec18p/NSF prior to vacuole docking and fusion. We now report a functional characterization of the vacuolar SNARE Vam7p, a SNAP-25 homolog. Although Vam7p has no hydrophobic domains, it is tightly associated with the vacuolar membrane. Vam7p is a constituent of the vacuole SNARE complex and is released from this complex by the Sec17p/Sec18p/ATP-mediated priming of the vacuoles. Even in the absence of the vacuolar v-SNARE Nyv1p, a subcomplex which includes Vam7p and the t-SNARE Vam3p is preserved. Vam7p is necessary for the stability of the vacuolar SNARE complex, since vacuoles from mutants deleted in VAM7 do not have a Vam3p-Nyv1p complex. Furthermore, Vam7p alone, in the absence of Nyv1p and Vam3p, cannot mediate fusion with wild-type vacuoles, whereas vacuoles with only Nyv1p or Vam3p alone can fuse with wild-type vacuoles in the absence of the other two SNAREs. Thus, Vam7p is important for the stable assembly and efficient function of the vacuolar SNARE complex and maintenance of the vacuolar morphology. This functional characterization of Vam7p suggests a general role for SNAP-25 homologs, not only on the plasma membrane but along the secretory pathway. 相似文献
17.
The class V myosins are actin-based motors that move a variety of cellular cargoes [1]. In budding yeast, their activity includes the relocation of a portion of the vacuole from the mother cell to the bud [2, 3]. Fission yeast cells contain numerous (approximately 80) small vacuoles. When S. pombe cells are placed in water, vacuoles fuse in response to osmotic stress [4]. Fission yeast possess two type V myosin genes, myo51(+) and myo52(+) [5]. In a myo51Delta strain, vacuoles were distributed throughout the cell, and mean vacuole diameter was identical to that seen in wild-type cells. When myo51Delta and wild-type cells were placed in water, vacuoles enlarged by fusion. In myo52Delta cells, by contrast, vacuoles were smaller and mostly clustered around the nucleus, and fusion in water was largely inhibited. When cells containing GFP-Myo52 were placed in water, Myo52 was seen to redistribute from the cell poles to the surface of the fusing vacuoles. Vacuole fusion in fission yeast was inhibited by the microtubule drug thiabendazole (TBZ) but not by the actin inhibitor latrunculin B. This is the first demonstration of the involvement of a type V myosin, possibly via an interaction with microtubules, in homotypic membrane fusion. 相似文献
18.
Membrane fusion is the last step in trafficking pathways during which membrane vesicles fuse with target organelles to deliver cargos. It is a central cellular reaction that plays important roles in signal transduction, protein sorting and subcellular compartmentation. Recent progress in understanding the roles of ion transporters in vacuole fusion in yeast is summarized in this article. It is becoming increasingly evident that the vacuolar proton pump V-ATPase and vacuolar Na+/H+ antiporter ScNhx1p are key components of the vacuole fusion machinery in yeast. Yeast ScNhx1p regulates vacuole fusion by controlling the luminal pH. V-ATPases serve a dual role in vacuolar integrity in which they regulate both vacuole fusion and fission reactions in yeast. Fission defects are epistatic to fusion defects. Vacuole fission depends on the proton translocation activity of the V-ATPase; by contrast, the fusion reaction does not need the transport activity but requires the physical presence of the proton pump. V0, the membrane-integral sector of the V-ATPase, forms trans-complexes between the opposing vacuoles in the terminal phase of vacuole fusion where the V0trans-complexes build a continuous proteolipid channel at the fusion site to mediate the bilayer fusion. 相似文献
19.
Rho GTPases, which control polarized cell growth through cytoskeletal reorganization, have recently been implicated in the control of endo- and exocytosis. We now report that both Rho1p and Cdc42p have a direct role in mediating the docking stage of homotypic vacuole fusion. Vacuoles prepared from strains with temperature-sensitive alleles of either Rho1p or Cdc42p are thermolabile for fusion. RhoGDI (Rdi1p), which extracts Rho1p and Cdc42p from the vacuole membrane, blocks vacuole fusion. The Rho GTPases can not fulfill their function as long as priming and Ypt7p-dependent tethering are inhibited. However, reactions that are reversibly blocked after docking by the calcium chelator BAPTA have passed the point of sensitivity to Rdi1p. Extraction and removal of Ypt7p, Rho1p and Cdc42p from docked vacuoles (by Gdi1p, Gyp7p and Rdi1p) does not impede subsequent membrane fusion, which is still sensitive to GTPgammaS. Thus, multiple GTPases act in a defined sequence to regulate the docking steps of vacuole fusion. 相似文献