首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
A previously isolated mouse Cl-1D derived cell line (B-1/25) overproduces adenosine deaminase (EC 3.5.4.4) by 3200-fold. The present studies were undertaken to determine the molecular basis of this phenomenon. Rabbit reticulocyte lysate and Xenopus oocyte translation studies indicated that the B-1/25 cells also overproduced adenosine deaminase mRNA. Total poly(A+) RNA derived from B-1/25 was used to construct a cDNA library. After prehybridization with excess parental Cl-1D RNA to selectively prehybridize nonamplified sequences, 32P-labeled cDNA probe synthesized from B-1/25 total poly(A+) RNA was used to identify recombinant colonies containing amplified mRNA sequences. Positive clones containing adenosine deaminase gene sequences were identified by blot hybridization analysis and hybridization-selected translation in both rabbit reticulocyte lysate and Xenopus oocyte translation systems. Adenosine deaminase cDNA clones hybridized with three poly(A+) RNA species of 1.5, 1.7, and 5.2 kilobases in length, all of which were overproduced in the B-1/25 cell line. Dot blot hybridization analysis using an adenosine deaminase cDNA clone showed that the elevated adenosine deaminase level in the B-1/25 cells was fully accounted for by an increase in adenosine deaminase gene copy number. The adenosine deaminase cDNA probes and the cell lines with amplified adenosine deaminase genes should prove extremely useful in studying the structure and regulation of the adenosine deaminase gene.  相似文献   

9.
10.
11.
12.
13.
14.
Adenosine deaminase (ADA) deficiency in humans leads to a combined immunodeficiency characterized by severe T and B cell lymphopenia. ADA-deficient humans also display defective development of gut-associated lymphoid tissues (GALT). They lack lymphoid cells, and the Peyer's patches are without germinal centers. In mice, ADA-deficient fetuses die perinatally due to liver damage, but they also exhibit pathology in the thymus, spleen, and the small intestine. The GI phenotype associated with ADA-deficient humans prompted us to examine the effect of ADA-deficiency on mouse small intestine tissue. The work presented here focuses on understanding the physiological role of ADA in the GI tract, using ADA-deficient mice rescued from perinatal lethality by restoring Ada expression to trophoblast cells. Histologically and immunologically, the GALT was compromised at all sites in ADA-/- mice, with the most dramatic changes seen in the Peyer's patches. Profound disturbances in purine metabolism were detected in all the gastrointestinal tissues. In particular, adenosine and deoxyadenosine, the ADA substrates, increased markedly while the product inosine decreased. The activity of S-adenosylhomocysteine hydrolase decreased throughout the GI tract, indicating a possible disruption of cellular transmethylation and activation of apoptotic pathways. There were also disturbances in the purine metabolic pathway with a decrease in the production of downstream nucleosides hypoxanthine and xanthine.  相似文献   

15.
16.
Preliminary X-ray analysis of crystals of murine adenosine deaminase   总被引:2,自引:0,他引:2  
We have obtained single crystals of a cloned mammalian adenosine deaminase (Mr = 41,000), a key enzyme in purine degradation and in normal development of the immune system, that are suitable for high-resolution structural analysis. The crystals belong to the space group C2 with unit cell parameters a = 101.68 A (1 A = 0.1 nm), b = 94.38 A, c = 85.51 A, and beta = 96.54 degrees. The asymmetric unit contains two enzyme molecules.  相似文献   

17.
The X-ray structure of murine adenosine deaminase complexed with the transition-state analogue 6-hydroxyl-1,6-dihydropurine ribonucleoside has been determined from a single crystal grown at pH 4.2 and transferred to mother liquor of increasing pH up to a final pH of 6.0 prior to data collection. The structure has been refined to 2.5 A to a final crystallographic R-factor of 20% using phases from the previously refined 2.4 A structure at pH 4.2. Kinetic measurements show that the enzyme is only 20% active at pH 4.2 whereas it is fully active between pH 6.0 and pH 8.5. The refined structures at either pH are essentially the same. Consideration of the pKa values of the key catalytic residues and the mechanism proposed on the basis of the structure suggests that the ionization state of these residues is largely responsible for the pH dependence on activity.  相似文献   

18.
Maas S  Kim YG  Rich A 《Gene》2000,243(1-2):59-66
We have recently identified the first mammalian tRNA-specific adenosine deaminase human ADAT1, a member of the ADAR family of RNA editing enzymes. This protein is responsible for the first step of the unique A(37) to m(1)I(37) modification in eukaryotic tRNA(Ala). Here, we present the genomic structure of murine ADAT1 and the functional expression of mADAT1 cDNA. In mouse, as well as in human, ADAT1 is expressed from a single copy gene. The coding region of the mADAT1 gene is spread over nine exons, covering approximately 30kb of genomic DNA and encodes a protein of 499 amino acids. Overall, mADAT1 shares 81% nucleotide homology and 87.5% protein homology with the human ortholog. The recombinant mouse protein is active specifically and with a high efficiency on human tRNA(Ala) in vitro. Its genomic organization is compared to the structures of the sequence-related, pre-mRNA specific adenosine deaminases ADAR1 and ADAR2.  相似文献   

19.
The nucleotide sequence for an unusual, cloned human adenosine deaminase cDNA has been determined. Contained within a sequence of 1535 nucleotides is a coding sequence of 1089 nucleotides that encodes a protein of 40,762 daltons. The coding sequence is interrupted by a non-coding region containing 76 nucleotides. Both the 3' and 5' ends of this region have consensus sequences generally associated with splice sites. The 3' untranslated sequence contained 308 nucleotides, including a polyadenylation signal sequence 20 nucleotides from the end. The cloned cDNA appears to correspond to a nuclear mRNA precursor which contains a small intron.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号