首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the classical model of molecular adaptation, a favored allele derives from a single mutational origin. This ignores that beneficial alleles can enter a population recurrently, either by mutation or migration, during the selective phase. In this case, descendants of several of these independent origins may contribute to the fixation. As a consequence, all ancestral haplotypes that are linked to any of these copies will be retained in the population, affecting the pattern of a selective sweep on linked neutral variation. In this study, we use analytical calculations based on coalescent theory and computer simulations to analyze molecular adaptation from recurrent mutation or migration. Under the assumption of complete linkage, we derive a robust analytical approximation for the number of ancestral haplotypes and their distribution in a sample from the population. We find that so-called "soft sweeps," where multiple ancestral haplotypes appear in a sample, are likely for biologically realistic values of mutation or migration rates.  相似文献   

2.
Hermisson J  Pennings PS 《Genetics》2005,169(4):2335-2352
A population can adapt to a rapid environmental change or habitat expansion in two ways. It may adapt either through new beneficial mutations that subsequently sweep through the population or by using alleles from the standing genetic variation. We use diffusion theory to calculate the probabilities for selective adaptations and find a large increase in the fixation probability for weak substitutions, if alleles originate from the standing genetic variation. We then determine the parameter regions where each scenario-standing variation vs. new mutations-is more likely. Adaptations from the standing genetic variation are favored if either the selective advantage is weak or the selection coefficient and the mutation rate are both high. Finally, we analyze the probability of "soft sweeps," where multiple copies of the selected allele contribute to a substitution, and discuss the consequences for the footprint of selection on linked neutral variation. We find that soft sweeps with weaker selective footprints are likely under both scenarios if the mutation rate and/or the selection coefficient is high.  相似文献   

3.
The signature of positive selection at randomly chosen loci   总被引:35,自引:0,他引:35  
Przeworski M 《Genetics》2002,160(3):1179-1189
In Drosophila and humans, there are accumulating examples of loci with a significant excess of high-frequency-derived alleles or high levels of linkage disequilibrium, relative to a neutral model of a random-mating population of constant size. These are features expected after a recent selective sweep. Their prevalence suggests that positive directional selection may be widespread in both species. However, as I show here, these features do not persist long after the sweep ends: The high-frequency alleles drift to fixation and no longer contribute to polymorphism, while linkage disequilibrium is broken down by recombination. As a result, loci chosen without independent evidence of recent selection are not expected to exhibit either of these features, even if they have been affected by numerous sweeps in their genealogical history. How then can we explain the patterns in the data? One possibility is population structure, with unequal sampling from different subpopulations. Alternatively, positive selection may not operate as is commonly modeled. In particular, the rate of fixation of advantageous mutations may have increased in the recent past.  相似文献   

4.
Linkage disequilibrium as a signature of selective sweeps   总被引:16,自引:0,他引:16  
Kim Y  Nielsen R 《Genetics》2004,167(3):1513-1524
The hitchhiking effect of a beneficial mutation, or a selective sweep, generates a unique distribution of allele frequencies and spatial distribution of polymorphic sites. A composite-likelihood test was previously designed to detect these signatures of a selective sweep, solely on the basis of the spatial distribution and marginal allele frequencies of polymorphisms. As an excess of linkage disequilibrium (LD) is also known to be a strong signature of a selective sweep, we investigate how much statistical power is increased by the inclusion of information regarding LD. The expected pattern of LD is predicted by a genealogical approach. Both theory and simulation suggest that strong LD is generated in narrow regions at both sides of the location of beneficial mutation. However, a lack of LD is expected across the two sides. We explore various ways to detect this signature of selective sweeps by statistical tests. A new composite-likelihood method is proposed to incorporate information regarding LD. This method enables us to detect selective sweeps and estimate the parameters of the selection model better than the previous composite-likelihood method that does not take LD into account. However, the improvement made by including LD is rather small, suggesting that most of the relevant information regarding selective sweeps is captured by the spatial distribution and marginal allele frequencies of polymorphisms.  相似文献   

5.
Desai MM  Fisher DS 《Genetics》2007,176(3):1759-1798
When beneficial mutations are rare, they accumulate by a series of selective sweeps. But when they are common, many beneficial mutations will occur before any can fix, so there will be many different mutant lineages in the population concurrently. In an asexual population, these different mutant lineages interfere and not all can fix simultaneously. In addition, further beneficial mutations can accumulate in mutant lineages while these are still a minority of the population. In this article, we analyze the dynamics of such multiple mutations and the interplay between multiple mutations and interference between clones. These result in substantial variation in fitness accumulating within a single asexual population. The amount of variation is determined by a balance between selection, which destroys variation, and beneficial mutations, which create more. The behavior depends in a subtle way on the population parameters: the population size, the beneficial mutation rate, and the distribution of the fitness increments of the potential beneficial mutations. The mutation-selection balance leads to a continually evolving population with a steady-state fitness variation. This variation increases logarithmically with both population size and mutation rate and sets the rate at which the population accumulates beneficial mutations, which thus also grows only logarithmically with population size and mutation rate. These results imply that mutator phenotypes are less effective in larger asexual populations. They also have consequences for the advantages (or disadvantages) of sex via the Fisher-Muller effect; these are discussed briefly.  相似文献   

6.
There is hope that the structure of molecular variation within populations can give evidence for recent adaptive evolution. New work on Drosophila genes that seem to have been subject to adaptive changes illustrates the difficulties in calculating the statistical significance of data trends that seem to show this.  相似文献   

7.
8.
The Duffy blood group locus, which encodes a chemokine receptor, is characterized by three alleles-FY*A, FY*B, and FY*O. The frequency of the FY*O allele, which corresponds to the absence of Fy antigen on red blood cells, is at or near fixation in most sub-Saharan African populations but is very rare outside Africa. The FST value for the FY*O allele is the highest observed for any allele in humans, providing strong evidence for the action of natural selection at this locus. Homozygosity for the FY*O allele confers complete resistance to vivax malaria, suggesting that this allele has been the target of selection by Plasmodium vivax or some other infectious agent. To characterize the signature of directional selection at this locus, we surveyed DNA sequence variation, both in a 1.9-kb region centered on the FY*O mutation site and in a 1-kb region 5-6 kb away from it, in 17 Italians and in a total of 24 individuals from five sub-Saharan African populations. The level of variation across both regions is two- to threefold lower in the Africans than in the Italians. As a result, the pooled African sample shows a significant departure from the neutral expectation for the number of segregating sites, whereas the Italian sample does not. The FY*O allele occurs on two major haplotypes in three of the five African populations. This finding could be due to recombination, recurrent mutation, population structure, and/or mutation accumulation and drift. Although we are unable to distinguish among these alternative hypotheses, it is likely that the two major haplotypes originated prior to selection on the FY*O mutation.  相似文献   

9.
Lin K  Li H  Schlötterer C  Futschik A 《Genetics》2011,187(1):229-244
Summary statistics are widely used in population genetics, but they suffer from the drawback that no simple sufficient summary statistic exists, which captures all information required to distinguish different evolutionary hypotheses. Here, we apply boosting, a recent statistical method that combines simple classification rules to maximize their joint predictive performance. We show that our implementation of boosting has a high power to detect selective sweeps. Demographic events, such as bottlenecks, do not result in a large excess of false positives. A comparison to other neutrality tests shows that our boosting implementation performs well compared to other neutrality tests. Furthermore, we evaluated the relative contribution of different summary statistics to the identification of selection and found that for recent sweeps integrated haplotype homozygosity is very informative whereas older sweeps are better detected by Tajima's π. Overall, Watterson's was found to contribute the most information for distinguishing between bottlenecks and selection.  相似文献   

10.
Natural selection operating at the amino acid sequence level can be detected by comparing the rates of synonymous (r(S)) and nonsynonymous (r(N)) nucleotide substitutions, where r(N)/r(S) (omega) > 1 and omega < 1 suggest positive and negative selection, respectively. The branch-site test has been developed for detecting positive selection operating at a group of amino acid sites for a pre-specified (foreground) branch of a phylogenetic tree by taking into account the heterogeneity of omega among sites and branches. Here the performance of the branch-site test was examined by computer simulation, with special reference to the false-positive rate when the divergence of the sequences analyzed was small. The false-positive rate was found to inflate when the assumptions made on the omega values for the foreground and other (background) branches in the branch-site test were violated. In addition, under a similar condition, false-positive results were often obtained even when Bonferroni correction was conducted and the false-discovery rate was controlled in a large-scale analysis. False-positive results were also obtained even when the number of nonsynonymous substitutions for the foreground branch was smaller than the minimum value required for detecting positive selection. The existence of a codon site with a possibility of occurrence of multiple nonsynonymous substitutions for the foreground branch often caused the branch-site test to falsely identify positive selection. In the re-analysis of orthologous trios of protein-coding genes from humans, chimpanzees, and macaques, most of the genes previously identified to be positively selected for the human or chimpanzee branch by the branch-site test contained such a codon site, suggesting a possibility that a significant fraction of these genes are false-positives.  相似文献   

11.

Background  

Nod26-like intrinsic proteins (NIPs) that belong to the aquaporin superfamily are unique to plants. According to homology modeling and phylogenetic analysis, the NIP subfamily can be further divided into three subgroups with distinct biological functions (NIP I, NIP II, and NIP III). In some grasses, the NIP III subgroup proteins (NIP2s) were demonstrated to be permeable to solutes with larger diameter, such as silicic acid and arsenous acids. However, to date there is no data-mining or direct experimental evidences for the permeability of such larger solutes for dicot NIP2s, although they exhibit similar three-dimensional structures as those in grasses. It is therefore intriguing to investigate the molecular mechanisms that drive the evolution of plant NIP2s.  相似文献   

12.
MOTIVATION: Accurate detection of positive Darwinian selection can provide important insights to researchers investigating the evolution of pathogens. However, many pathogens (particularly viruses) undergo frequent recombination and the phylogenetic methods commonly applied to detect positive selection have been shown to give misleading results when applied to recombining sequences. We propose a method that makes maximum likelihood inference of positive selection robust to the presence of recombination. This is achieved by allowing tree topologies and branch lengths to change across detected recombination breakpoints. Further improvements are obtained by allowing synonymous substitution rates to vary across sites. RESULTS: Using simulation we show that, even for extreme cases where recombination causes standard methods to reach false positive rates >90%, the proposed method decreases the false positive rate to acceptable levels while retaining high power. We applied the method to two HIV-1 datasets for which we have previously found that inference of positive selection is invalid owing to high rates of recombination. In one of these (env gene) we still detected positive selection using the proposed method, while in the other (gag gene) we found no significant evidence of positive selection. AVAILABILITY: A HyPhy batch language implementation of the proposed methods and the HIV-1 datasets analysed are available at http://www.cbio.uct.ac.za/pub_support/bioinf06. The HyPhy package is available at http://www.hyphy.org, and it is planned that the proposed methods will be included in the next distribution. RDP2 is available at http://darwin.uvigo.es/rdp/rdp.html  相似文献   

13.

Background

During the lifetime of a fermenter culture, the soil bacterium S. coelicolor undergoes a major metabolic switch from exponential growth to antibiotic production. We have studied gene expression patterns during this switch, using a specifically designed Affymetrix genechip and a high-resolution time-series of fermenter-grown samples.

Results

Surprisingly, we find that the metabolic switch actually consists of multiple finely orchestrated switching events. Strongly coherent clusters of genes show drastic changes in gene expression already many hours before the classically defined transition phase where the switch from primary to secondary metabolism was expected. The main switch in gene expression takes only 2 hours, and changes in antibiotic biosynthesis genes are delayed relative to the metabolic rearrangements. Furthermore, global variation in morphogenesis genes indicates an involvement of cell differentiation pathways in the decision phase leading up to the commitment to antibiotic biosynthesis.

Conclusions

Our study provides the first detailed insights into the complex sequence of early regulatory events during and preceding the major metabolic switch in S. coelicolor, which will form the starting point for future attempts at engineering antibiotic production in a biotechnological setting.  相似文献   

14.

Background  

One goal of gene expression profiling is to identify signature genes that robustly distinguish different types or grades of tumors. Several tumor classifiers based on expression profiling have been proposed using microarray technique. Due to important differences in the probabilistic models of microarray and SAGE technologies, it is important to develop suitable techniques to select specific genes from SAGE measurements.  相似文献   

15.
We analyze the frequencies of synonymous codons in animal mitochondrial genomes, focusing particularly on mammals and fish. The frequencies of bases at 4-fold degenerate sites are found to be strongly influenced by context-dependent mutation, which causes correlations between pairs of neighboring bases. There is a pattern of excess of certain dinucleotides and deficit of others that is consistent across large numbers of species, despite the wide variation of single-nucleotide frequencies among species. In many bacteria, translational selection is an important influence on codon usage. In order to test whether translational selection also plays a role in mitochondria, we need to control for context-dependent mutation. Selection for translational accuracy can be detected by comparison of codon usage in conserved and variable sites in the same genes. We give a test of this type that works in the presence of context-dependent mutation. There is very little evidence for translational accuracy selection in the mitochondrial genes considered here. Selection for translational efficiency might lead to preference for codons that match the limited repertoire of anticodons on the mitochondrial tRNAs. This is difficult to detect because the effect would usually be in the same direction in comparable to codon families and so would not cause an observable difference in codon usage between families. Several lines of evidence suggest that this type of selection is weak in most cases. However, we found several cases where unusual bases occur at the wobble position of the tRNA, and in these cases, some evidence for selection on codon usage was found. We discuss the way that these unusual cases are associated with codon reassignments in the mitochondrial genetic code.  相似文献   

16.
Connallon T  Clark AG 《Genetics》2012,190(4):1477-1489
Antagonistic selection--where alleles at a locus have opposing effects on male and female fitness ("sexual antagonism") or between components of fitness ("antagonistic pleiotropy")--might play an important role in maintaining population genetic variation and in driving phylogenetic and genomic patterns of sexual dimorphism and life-history evolution. While prior theory has thoroughly characterized the conditions necessary for antagonistic balancing selection to operate, we currently know little about the evolutionary interactions between antagonistic selection, recurrent mutation, and genetic drift, which should collectively shape empirical patterns of genetic variation. To fill this void, we developed and analyzed a series of population genetic models that simultaneously incorporate these processes. Our models identify two general properties of antagonistically selected loci. First, antagonistic selection inflates heterozygosity and fitness variance across a broad parameter range--a result that applies to alleles maintained by balancing selection and by recurrent mutation. Second, effective population size and genetic drift profoundly affect the statistical frequency distributions of antagonistically selected alleles. The "efficacy" of antagonistic selection (i.e., its tendency to dominate over genetic drift) is extremely weak relative to classical models, such as directional selection and overdominance. Alleles meeting traditional criteria for strong selection (N(e)s > 1, where N(e) is the effective population size, and s is a selection coefficient for a given sex or fitness component) may nevertheless evolve as if neutral. The effects of mutation and demography may generate population differences in overall levels of antagonistic fitness variation, as well as molecular population genetic signatures of balancing selection.  相似文献   

17.
A novel principle for selection of transgenic plant cells: positive selection   总被引:24,自引:0,他引:24  
Summary A novel principle for selection of transgenic plant cells is presented. In contrast to traditional selection where the transgenic cells acquire the ability to survive on selective media while the non-transgenic cells are killed (negative selection), this selection method actively favours regeneration and growth of the transgenic cells while the non-transgenic cells are starved but not killed. Therefore, this selection strategy is termed positive selection. TheE. coli -glucuronidase gene was used as selectable (as well as screenable) gene and a glucuronide derivative of the cytokinin benzyladenine as selective agent which is inactive as cytokinin but, upon hydrolysis by GUS, active cytokinin is released stimulating the transformed cells to regenerate. Selection ofAgrobacterium tumefaciens inoculated of tobacco leaf discs on benzyladenine N-3-glucuronide (7.5–15 mg/l) resulted in 1.7–2.9 fold higher transformation frequencies compared to kanamycin selection. A significant advantage of this selection procedure is the elimination of the need for herbicide and antibiotic resistance genes.  相似文献   

18.
Williams-Beuren syndrome is a segmental aneusomy syndrome with manifestations affecting the vascular, connective tissue, endocrine and central nervous systems. Most patients show a similar heterozygous approximately 1.5 Mb deletion at 7q11.23 that contains a number of reported genes. Deletion mapping in the few atypical patients with smaller deletions suggested that additive effects of haploinsufficiency for two or more genes might be necessary for the phenotype. Vascular stenoses are caused by haploinsufficiency at the elastin gene, while the genes responsible for the cognitive deficits are likely located at the telomeric edge of the deletion, including CYLN2 and GTF2I. Large region-specific segmental duplications predispose to misalignment and inter- or intrachromosomal unequal crossing-over causing the deletions. Atypical alleles at 7q11.23 such as inversions and deletions/insertions of large repeats, also generated through aberrant recombination between the local segmental duplications, are found in approximately 35% of transmitting parents. Genomic instability at 7q11.23 is directly related to the genomic structure of the region.  相似文献   

19.
A statistical model for mutation and selection is formulated for organisms that reproduce by division. The mutation rate that optimizes the probability of clone survival is approximated using the theory of branching processes. However, it is shown by example that this optimizing mutation rate need not be the most advantageous mutation rate. The principle that selection favors those modifying features that optimize the probability of clone survival is thereby shown to be of limited applicability.  相似文献   

20.
It has been suggested that codon volatility (the proportion of the point-mutation neighbors of a codon that encode different amino acids) can be used as an index of past positive selection. We compared codon volatility with patterns of synonymous and nonsynonymous nucleotide substitution in genome-wide comparisons of orthologous genes between three pairs of related genomes: (1) the protists Plasmodium falciparum and P. yoelii, (2) the fungi Saccharomyces cerevisiae and S. paradoxus, and (3) the mammals mouse and rat. Codon volatility was not consistently associated with an elevated rate of nonsynonymous substitution, as would be expected under positive selection. Rather, the most consistent and powerful correlate of elevated codon volatility was nucleotide content at the second codon position, as expected, given the nature of the genetic code.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号