首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A1 is a core protein of the eukaryotic heterogeneous nuclear ribonucleoprotein complex and is under study here as a prototype single-stranded nucleic acid-binding protein. A1 is a two-domain protein, NH2-terminal and COOH-terminal, with highly conserved primary structure among vertebrate homologues sequenced to date. It is well documented that the NH2-terminal domain has single-stranded DNA and RNA binding activity. We prepared a proteolytic fragment of rat A1 representing the COOH-terminal one-third of the intact protein, the region previously termed COOH-terminal domain. This purified fragment of 133 amino acids binds to DNA and also binds tightly to the fluorescent reporter poly(ethenoadenylate), which is used to access binding parameters. In solution with 0.41 M NaCl, the equilibrium constant is similar to that observed with A1 itself, and binding is cooperative. The purified COOH-terminal fragment can be photochemically cross-linked to bound nucleic acid, confirming that COOH-terminal fragment residues are in close contact with the polynucleotide lattice. These binding results with isolated COOH-terminal fragment indicate that the COOH-terminal domain in intact A1 can contribute directly to binding properties. Contact between both COOH-terminal domain and NH2-terminal domain residues in an intact A1:poly(8-azidoadenylate) complex was confirmed by photochemical cross-linking.  相似文献   

2.
Characterization of mammalian heterogeneous nuclear ribonucleoprotein complex protein A1 is reported after large-scale overproduction of the protein in Escherichia coli and purification to homogeneity. A1 is a single-stranded nucleic acid binding protein of 320 amino acids and 34,214 Da. The protein has two domains. The NH2-terminal domain is globular, whereas the COOH-terminal domain of about 120 amino acids has low probability of alpha-helix structure and is glycinerich. Nucleic acid binding properties of recombinant A1 were compared with those of recombinant and natural proteins corresponding to the NH2-terminal domain. A1 bound to single-stranded DNA-cellulose with higher affinity than the NH2-terminal domain peptides. Protein-induced fluorescence enhancement was used to measure equilibrium binding properties of the proteins. A1 binding to poly (ethenoadenylate) was cooperative with the intrinsic association constant of 1.5 X 10(5) M-1 at 0.4 M NaCl and a cooperativity parameter of 30. The NH2-terminal domain peptides bound noncooperatively and with a much lower association constant. With these peptides and with intact A1, binding was fully reversed by increasing [NaCl]; yet. A1 binding was much less salt-sensitive than binding by the NH2-terminal domain peptides. A synthetic polypeptide analog of the COOH-terminal domain was prepared and was found to bind tightly to poly-(ethenoadenylate). The results are consistent with the idea that the COOH-terminal domain contributes to A1 binding through both cooperative protein-protein interaction and direct interaction with the nucleic acid.  相似文献   

3.
4.
We have purified and characterized a single-stranded DNA binding protein (N4 SSB) induced after coliphage N4 infection. It has a monomeric molecular weight of 31,000 and contains 10 tyrosine and 1-2 tryptophan amino acid residues. Its fluorescence spectrum is dominated by the tyrosine residues, and their fluorescence is quenched when the protein binds single-stranded DNA. Fluorescence quenching was used as an assay to quantitate binding of the protein to single-stranded nucleotides. The N4 single-stranded DNA binding protein binds cooperatively to single-stranded nucleic acids and binds single-stranded DNA more tightly than RNA. The binding involves displacement of cations from the DNA and anions from the protein. The apparent binding affinity is very salt-dependent, decreasing as much as 1,000-fold for a 10-fold increase in NaCl concentration. The degree of cooperativity (omega) is relatively independent of salt concentration. At 37 degrees C in 0.22 M NaCl, the protein has an intrinsic binding constant for M13 viral DNA of 3.8 x 10(4) M-1, a cooperativity factor omega of 300, and binding site size of 11 nucleotides per monomer. The protein lowers the melting point of poly(dA.dT).poly(dA-dT) by greater than 60 degrees C but cannot lower the melting transition or assist in the renaturation of natural DNA. N4 single-stranded DNA binding protein enhances the rate of DNA synthesis catalyzed by the N4 DNA polymerase by increasing the processivity of the N4 DNA polymerase and melting out hairpin structures that block polymerization.  相似文献   

5.
6.
Rat DNA polymerase beta (beta-pol) is a 39-kDa protein organized in two tightly folded domains, 8-kDa N-terminal and 31-kDa C-terminal domains, connected by a short protease-sensitive region. The 8-kDa domain contributes template binding to the intact protein, and we now report that the 31-kDa C-terminal domain contributes catalytic activity. Our results show that this domain as a purified proteolytic fragment conducts DNA synthesis under appropriate conditions but the kcat is lower and primer extension properties are different from those of the intact enzyme. A proteolytic truncation of the 31-kDa catalytic domain fragment, to remove a 60-residue segment from the NH2-terminal end, results in nearly complete loss of activity, suggesting the importance of this segment. Overall, these results indicate that the domains of beta-pol have distinct functional roles, template binding and nucleotidyltransferase, respectively; yet, the intact protein is more active for each function than the isolated individual domain fragment.  相似文献   

7.
T antigen (Tag) from simian virus 40 binds specifically to two distinct sites in the viral origin of replication and to single-stranded DNA. Analysis of the protein domain responsible for these activities revealed the following. (i) The C-terminal boundary of the origin-specific and single-strand-specific DNA-binding domain is at or near amino acid 246; furthermore, the maximum of these DNA-binding activities coincides with a narrow C-terminal boundary, spanning 4 amino acids (246 to 249) and declines sharply in proteins with C termini which differ by a few (4 to 10) amino acids; (ii) a polypeptide spanning residues 132 to 246 of Tag is an independent domain responsible for origin-specific DNA binding and presumably for single-stranded DNA binding; and (iii) a comparison of identical N-terminal fragments of Tag purified from mammalian and bacterial cells revealed differential specificity and levels of activity between the two sources of protein. A role for posttranslational modification (phosphorylation) in controlling the DNA-binding activity of Tag is discussed.  相似文献   

8.
BACKGROUND: DNA primases catalyse the synthesis of the short RNA primers that are required for DNA replication by DNA polymerases. Primases comprise three functional domains: a zinc-binding domain that is responsible for template recognition, a polymerase domain, and a domain that interacts with the replicative helicase, DnaB. RESULTS: We present the crystal structure of the zinc-binding domain of DNA primase from Bacillus stearothermophilus, determined at 1.7 A resolution. This is the first high-resolution structural information about any DNA primase. A model is discussed for the interaction of this domain with the single-stranded DNA template. CONCLUSIONS: The structure of the DNA primase zinc-binding domain confirms that the protein belongs to the zinc ribbon subfamily. Structural comparison with other nucleic acid binding proteins suggests that the beta sheet of primase is likely to be the DNA-binding surface, with conserved residues on this surface being involved in the binding and recognition of DNA.  相似文献   

9.
10.
Higher plants have two complexes that bind the m7G-cap structure of mRNA and mediate interactions between mRNA and ribosomal subunits, designated eIF4F and eIFiso4F. Both complexes contain a small subunit that binds the 5'-cap structure of mRNA, and a large subunit, eIF4G or eIFiso4G, that binds other translation factors and RNA. Sequence-specific proteases were used to cleave native cap-binding complexes into structural domains, which were purified by affinity chromatography. We show here that eIFiso4G contains a central protease-resistant domain that binds specifically to nucleic acids. This domain spans Gln170 to Glu443 and includes four of the six homology blocks shared by eIFiso4G and eIF4G. A slightly shorter overlapping sequence, from Gly202 to Lys445, had no nucleic acid binding activity, indicating that the N-terminal end of the nucleic acid binding site lies within Gln170 to Arg201. The binding of the central domain and native eIFiso4F to RNA homopolymers and double- and single-stranded DNAs was studied. Both molecules had highest affinity for poly(G) and recognized single- and double-stranded sequences.  相似文献   

11.
The connector of bacteriophage phi 29 is required for prohead assembly, binds DNA, and drives DNA packaging into viral proheads. Limited proteolysis of the connector protein with endoproteinase Glu-C from Staphylococcus aureus V8 and chymotrypsin showed that a domain of the NH2-terminal region is involved in DNA binding and in the subsequent packaging into preformed proheads, but not in prohead assembly. Mutants in specific amino acids of the NH2-terminal domain, obtained by directed mutagenesis techniques, showed that the Ala1-Arg2-Lys3-Arg4 region of the connector is absolutely necessary for DNA packaging into the proheads as well as for efficient DNA binding.  相似文献   

12.
13.
To define the actin-binding site within the NH2-terminal domain (residues 1-245) of chick smooth muscle alpha-actinin, we expressed a series of alpha-actinin deletion mutants in monkey Cos cells. Mutant alpha-actinins in which residues 2-19, 217-242, and 196-242 were deleted still retained the ability to target to actin filaments and filament ends, suggesting that the actin-binding site is located within residues 20-195. When a truncated alpha-actinin (residues 1-290) was expressed in Cos cells, the protein localized exclusively to filament ends. This activity was retained by a deletion mutant lacking residues 196-242, confirming that these are not essential for actin binding. The actin-binding site in alpha-actinin was further defined by expressing both wild-type and mutant actin-binding domains as fusion proteins in E. coli. Analysis of the ability of such proteins to bind to F-actin in vitro showed that the binding site was located between residues 108 and 189. Using both in vivo and in vitro assays, we have also shown that the sequence KTFT, which is conserved in several members of the alpha-actinin family of actin-binding proteins (residues 36-39 in the chick smooth muscle protein) is not essential for actin binding. Finally, we have established that the NH2-terminal domain of dystrophin is functionally as well as structurally homologous to that in alpha-actinin. Thus, a chimeric protein containing the NH2-terminal region of dystrophin (residues 1-233) fused to alpha-actinin residues 244-888 localized to actin-containing structures when expressed in Cos cells. Furthermore, an E. coli-expressed fusion protein containing dystrophin residues 1-233 was able to bind to F-actin in vitro.  相似文献   

14.
The DNA and protein sequences of single-stranded DNA binding proteins (SSBs) encoded by the plP71a, plP231a, and R64 conjugative plasmids have been determined and compared to Escherichia coli SSB and the SSB encoded by F-plasmid. Although the amino acid sequences of all of these proteins are highly conserved within the NH2-terminal two-thirds of the protein, they diverge in the COOH-terminal third region. A number of amino acid residues which have previously been implicated as being either directly or indirectly involved in DNA binding are conserved in all of these SSBs. These residues include Trp-40, Trp-54, Trp-88, His-55, and Phe-60. On the basis of these sequence comparisons and DNA binding studies, a role for Tyr-70 in DNA binding is suggested for the first time. Although the COOH-terminal third of these proteins diverges more than their NH2-terminal regions, the COOH-terminal five amino acid residues of all five of these proteins are identical. In addition, all of these proteins share the characteristic property of having a protease resistant, NH2-terminal core and an acidic COOH-terminal region. Despite the high degree of sequence homology among the plasmid SSB proteins, the F-plasmid SSB appears unique in that it was the only SSB tested that neither bound well to poly(dA) nor was able to stimulate DNA polymerase III holoenzyme elongation rates. Poly [d(A-T)] melting studies suggest that at least three of the plasmid encoded SSBs are better helix-destabilizing proteins than is the E. coli SSB protein.  相似文献   

15.
VLA-2 (also called gpIa/IIa on platelets) is a collagen receptor with a unique alpha subunit and a beta subunit common to other adhesion receptors in the VLA/integrin family. Multiple cDNA clones for the human VLA-2 alpha 2 subunit have been selected from a lambda gtll library by specific antibody screening. The 5,374-bp nucleotide sequence encoded for 1,181 amino acids, including a signal peptide of 29 amino acids followed by a long extracellular domain (1,103 amino acids), a transmembrane domain, and a short cytoplasmic segment (22 amino acids). Direct sequencing of purified alpha 2 protein confirmed the identity of the 15 NH2-terminal amino acids. Overall, the alpha 2 amino acid sequence was 18-25% similar to the sequences known for other integrin alpha subunits. In particular, the alpha 2 sequence matched other integrin alpha chains in (a) the positions of 17 of its 20 cysteine residues; (b) the presence of three metal-binding domains of the general structure DXDXDGXXD; and (c) the transmembrane domain sequence. In addition, the alpha 2 sequence has a 191-amino acid insert (called the I-domain), previously found only in leukocyte integrins of the beta 2 integrin family. The alpha 2 I-domain was 23-41% similar to domains in cartilage matrix protein and von Willebrand factor, which are perhaps associated with collagen binding. The NH2-terminal sequence reported here for alpha 2 does not match the previously reported alpha 2 NH2-terminal sequence (Takada, Y., J. L. Strominger, and M. E. Hemler. 1987. Proc. Natl. Acad. Sci. USA. 84:3239-3243). Resolution of this discrepancy suggests that there may be another VLA heterodimer that resembles VLA-2 in size but has a different amino acid sequence.  相似文献   

16.
The Pol region of the Gag-Pol fusion protein of the L-A double-stranded (ds) RNA virus of Saccharomyces cerevisiae has (i) a domain essential for packaging viral positive strands, (ii) consensus amino acid sequence patterns typical of RNA-dependent RNA polymerases, and (iii) two single-stranded RNA binding domains. We describe here a third single-stranded RNA binding domain (Pol residues 374 to 432), which is unique in being cryptic. Its activity is revealed only after deletion of an inhibitory region C terminal to the binding domain itself. This cryptic RNA binding domain is necessary for propagation of M1 satellite dsRNA, but it is not necessary for viral particle assembly or for packaging of viral positive-strand single-stranded RNA. The cryptic RNA binding domain includes a sequence pattern common among positive-strand single-stranded RNA and dsRNA viral RNA-dependent RNA polymerases, suggesting that it has a role in RNA polymerase activity.  相似文献   

17.
The single-stranded DNA (ssDNA) cytidine deaminase APOBEC3F (A3F) deaminates cytosine (C) to uracil (U) and is a known restriction factor of HIV-1. Its C-terminal catalytic domain (CD2) alone is capable of binding single-stranded nucleic acids and is important for deamination. However, little is known about how the CD2 interacts with ssDNA. Here we report a crystal structure of A3F-CD2 in complex with a 10-nucleotide ssDNA composed of poly-thymine, which reveals a novel positively charged nucleic acid binding site distal to the active center that plays a key role in substrate DNA binding and catalytic activity. Lysine and tyrosine residues within this binding site interact with the ssDNA, and mutating these residues dramatically impairs both ssDNA binding and catalytic activity. This binding site is not conserved in APOBEC3G (A3G), which may explain differences in ssDNA-binding characteristics between A3F-CD2 and A3G-CD2. In addition, we observed an alternative Zn-coordination conformation around the active center. These findings reveal the structural relationships between nucleic acid interactions and catalytic activity of A3F.  相似文献   

18.
A Kumar  S H Wilson 《Biochemistry》1990,29(48):10717-10722
A1 is a major core protein of the mammalian hnRNP complex, and as a purified protein of approximately 34 kDa, A1 is a strong single-stranded nucleic acid binding protein. Several lines of evidence suggest that the protein is organized in discrete domains consisting of an N-terminal segment of approximately 22 kDa and a C-terminal segment of approximately 12 kDa. Each of these domains as a purified fragment is capable of binding to both ssDNA and RNA. We report here that A1 and its C-terminal domain fragment are capable of potent strand-annealing activity for base-pair complementary single-stranded polynucleotides of both RNA and DNA. This effect is not stimulated by ATP. Compared with A1 and the C-terminal fragment, the N-terminal domain fragment has negligible annealing activity. These results indicate that A1 has biochemical activity consistent with a strand-annealing role in relevant reactions, such as pre-mRNA splicing.  相似文献   

19.
The Mr = 38,300 polypeptide of the purified recombinant rat DNA polymerase beta served as an excellent substrate for protein kinase C (PKC) in vitro but not for the catalytic subunit of cAMP-dependent protein kinase. The phosphorylation by PKC resulted in inactivation of DNA polymerase beta activity, and recovery was achieved by dephosphorylation with alkaline phosphatase. Since the phosphorylated DNA polymerase beta was retained with use of a single-stranded DNA-cellulose column, inactivation might occur at a site different from that for the DNA binding. Amino acid sequence analysis of the phosphopeptides revealed that the phosphorylated sites were 2 serine residues at positions 44 and 55 from the NH2 terminus, either or both of which might be involved in the catalytic activity of DNA polymerase beta. Thus, the inactivation of the DNA repair enzyme, DNA polymerase beta, by PKC may be an important process in the modification of DNA metabolism in the nucleus through signal transduction processes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号