首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
2.
The mechanisms by which cells obtain instructions to precisely re-create the missing parts of an organ remain an unresolved question in regenerative biology. Urodele limb regeneration is a powerful model in which to study these mechanisms. Following limb amputation, blastema cells interpret the proximal-most positional identity in the stump to reproduce missing parts faithfully. Classical experiments showed the ability of retinoic acid (RA) to proximalize blastema positional values. Meis homeobox genes are involved in RA-dependent specification of proximal cell identity during limb development. To understand the molecular basis for specifying proximal positional identities during regeneration, we isolated the axolotl Meis homeobox family. Axolotl Meis genes are RA-regulated during both regeneration and embryonic limb development. During limb regeneration, Meis overexpression relocates distal blastema cells to more proximal locations, whereas Meis knockdown inhibits RA proximalization of limb blastemas. Meis genes are thus crucial targets of RA proximalizing activity on blastema cells.  相似文献   

3.
There is an active debate about how skeletal elements are encoded along the proximodistal (PD) axis of the developing limb. Our aim here is to see whether consideration of the evolutionary morphology of the limb can contribute to our understanding of patterning mechanisms. Of special interest in this context are animals showing reiterated skeletal elements along the PD axis (e.g., dolphins and plesiosaurs with hyperphalangy). We build on previous hypotheses to propose a two-step model of PD patterning in which specification of broad domains in the early limb bud is distinct from subsequent processes that divides an initial anlage into a segmental pattern to yield individual skeletal elements. This model overcomes a major evolutionary problem with the progress zone model, which has not previously been noted: pleiotropy. Parallels with other developmental systems are briefly discussed.  相似文献   

4.
The heart is a robust organ, capable of pumping nutrients and transferring oxygen throughout the body via a network of capillaries, veins and arteries, for the entirety of a human's life. However, the fragility of mammalian hearts is also evident when it becomes damaged and parts of the organ fail to function. This is due to the fact that rather than replenishing the damaged areas with functional cellular mass, fibrotic scar tissue is the preferred replacement, resulting in an organ with functional deficiencies. Due to the mammalian hearts incapability to regenerate following damage and the ever-increasing number of people worldwide suffering from heart disease, tireless efforts are being made to discover ways of inducing a regenerative response in this most important organ. One such avenue of investigation involves studying our distantly related non-mammalian vertebrate cousins, which over the last decade has proved to us that cardiac regeneration is possible. This review will highlight these organisms and provide insights into some of the seminal discoveries made in the heart regeneration field using these amazing chordates.  相似文献   

5.
6.
The ability of animals to repair tissue damage is widespread and impressive. Among tissues, the repair and remodeling of bone occurs during growth and in response to injury; however, loss of bone above a threshold amount is not regenerated, resulting in a “critical-size defect” (CSD). The development of therapies to replace or regenerate a CSD is a major focus of research in regenerative medicine and tissue engineering. Adult urodeles (salamanders) are unique in their ability to regenerate complex tissues perfectly, yet like mammals do not regenerate a CSD. We report on an experimental model for the regeneration of a CSD in the axolotl (the Excisional Regeneration Model) that allows for the identification of signals to induce fibroblast dedifferentiation and skeletal regeneration. This regenerative response is mediated in part by BMP signaling, as is the case in mammals; however, a complete regenerative response requires the induction of a population of undifferentiated, regeneration-competent cells. These cells can be induced by signaling from limb amputation to generate blastema cells that can be grafted to the wound, as well as by signaling from a nerve and a wound epithelium to induce blastema cells from fibroblasts within the wound environment.  相似文献   

7.
8.
 A central theme concerning the epimorphic regenerative potential of urodele amphibian appendages is that limb regeneration in the adult parallels larval limb development. Results of previous research have led to the suggestion that homeobox containing genes are ”re-expressed” during the epimorphic regeneration of forelimbs of adult Notophthalmus viridescens in patterns which retrace larval limb development. However, to date no literature exists concerning expression patterns of any homeobox containing genes during larval development of this species. The lack of such information has been a hindrance in exploring the similarities as well as differences which exist between limb regeneration in adults and limb development in larvae. Here we report the first such results of the localization of Hox C6 (formerly, NvHBox-1) in developing and regenerating forelimbs of N. viridescens larvae as demonstrated by whole-mount in situ hybridization. Inasmuch as the pattern of Hox C6 expression is similar in developing forelimb buds of larvae and epimorphically regenerating forelimb blastemata of both adults and larvae, our results support the paradigm that epimorphic regeneration in adult newts parallels larval forelimb development. However, in contrast with observations which document the presence of Hox C6 in both intact, as well as regenerating hindlimbs and tails of adult newts, our results reveal no such Hox C6 expression during larval development of hindlimbs or the tail. As such, our findings indicate that critical differences in larval hindlimb and tail development versus adult expression patterns of this gene in these two appendages may be due primarily to differences in gene regulation as opposed to gene function. Thus, the apparent ability of urodeles to regulate genes in such a highly co-ordinated fashion so as to replace lost, differentiated, appendicular structures in adult animals may assist, at least in part, in better elucidating the phenomenon of epimorphic regeneration. Received: 6 November 1998 / Accepted: 12 December 1998  相似文献   

9.
Nymphs of hemimetabolous insects, such as cockroaches and crickets, possess functional legs with a remarkable capacity for epimorphic regeneration. In this study, we have focused on the role of epidermal growth factor receptor (EGFR) signaling in regeneration of a nymphal leg in the cricket Gryllus bimaculatus. We performed loss-of-function analyses with a Gryllus Egfr homolog (Gb'Egfr) and nymphal RNA interference (RNAi). After injection of double-stranded RNA for Gb'Egfr in the body cavity of the third instar cricket nymph, amputation of the leg at the distal tibia resulted in defects of normal distal regeneration. The regenerated leg lacked the distal tarsus and pretarsus. This result indicates that EGFR signaling is required for distal leg patterning in regeneration during the nymphal stage of the cricket. Furthermore, we demonstrated that EGFR signaling acts downstream of the canonical Wnt/Wg signaling and regulates appendage proximodistal (PD) patterning genes aristaless and dachshund during regeneration. Our results suggest that EGFR signaling influences positional information along the PD axis in distal leg patterning of insects, regardless of the leg formation mode.  相似文献   

10.
Comparison of mesopodial skeletal patterns found in native and regenerated limbs of the salamander Plethodon cinereus reveals variant patterns unique to each group. Variant patterns in native limbs are based on fusions between laterally adjacent elements (i.e., in the anteroposterior axis). Variant patterns in the mesopodia of regenerated limbs usually exhibit fusions among proximodistally adjacent elements. Analysis of regenerates derived from limb amputation at different levels shows that the axis of fusion between regenerated mesopodial elements remains the same (i.e., proximodistal) independent of amputation level. However, the frequency of specific fusion combinations is unexpectedly sensitive to amputation level. Proximal (stylopodial) amputation results in mesopodial patterns with predominantly preaxial fusion combinations; distal amputation produces mesopodial patterns with predominantly postaxial fusion combinations. This finding is discussed in the context of other recent studies in which amputation level influenced limb regeneration patterning.  相似文献   

11.
The time interval between cuts that are made to obtain a tissue fragment from a planarian was found to be important to the process of its regeneration. Short fragments made by two transverse cuts across the body were more likely to regenerate abnormally when the interval between the two cuts was 5 or 12 min than when it was 1.5 min. The longer intervals specifically altered the regression line in the correlation between the length:width ratio of fragments and frequency of abnormal regenerates. This effect occured regardless of which region of the body the fragment was taken from. The time interval also affected body proportioning in regenerates and to the greatest degree in fragments derived from the region located immediately behind the head. These results indicate that events occuring shortly after a cut is made in a planarian significantly affect structure patterning and proportioning of the regenerate.  相似文献   

12.
The recombinant limb is a model system that has proved fruitful for analyzing epithelial-mesenchymal interactions and understanding the functional properties of the components of the limb bud. Here we present an overview of some of the insights obtained through the use of this technique. Among these are the understanding that fore or hind limb identity is inherent to the limb bud mesoderm, that the apical ectodermal ridge (AER) is a permissive signaling center and that the limb bud ectoderm plays a central role in the control of dorsoventral polarity. Recombinant limb studies have also allowed the identification of the affected tissue component in several limb mutants. More recently this model has been applied to the study of regulation of gene expressions related to patterning. In this report we use recombinant limbs to analyze pattering of the Pax3 expressing limb muscle cell lineage in the early stages of limb development. In recombinant limbs made without the zone of polarizing activity (ZPA), myoblasts appear intermingled with other mesodermal cells at the beginning of the recombinant limb development. Rapidly thereafter, the muscle precursors segregate and organize around the central forming chondrogenic core of the recombinant. Although this segregation is reminiscent of that occurring during normal development, the myoblasts in the recombinant fail to proliferate appropriately and also fail to migrate distally. Consequently, the muscle pattern in the recombinant limb is defective indicating that normal patterning cues are absent. However, recombinant limbs polarized with a ZPA exhibited a larger mass of muscle cells and a more normal morphogenesis, supporting a role for this signaling center in limb muscle development. Finally, we have ruled out host somite contributions to recombinant limbs by grafting chick recombinant limbs to quail hosts. This initial report demonstrates the value of the recombinant limb model system for dissecting the environmental cues required for normal muscle limb patterning. Received: 31 August 1998 / Accepted: 29 September 1998  相似文献   

13.
Cytochrome P450 oxidoreductase (POR) acts as an electron donor for all cytochrome P450 enzymes. Knockout mouse Por(-/-) mutants, which are early embryonic (E9.5) lethal, have been found to have overall elevated retinoic acid (RA) levels, leading to the idea that POR early developmental function is mainly linked to the activity of the CYP26 RA-metabolizing enzymes (Otto et al., Mol. Cell. Biol. 23, 6103-6116). By crossing Por mutants with a RA-reporter lacZ transgene, we show that Por(-/-) embryos exhibit both elevated and ectopic RA signaling activity e.g. in cephalic and caudal tissues. Two strategies were used to functionally demonstrate that decreasing retinoid levels can reverse Por(-/-) phenotypic defects, (i) by culturing Por(-/-) embryos in defined serum-free medium, and (ii) by generating compound mutants defective in RA synthesis due to haploinsufficiency of the retinaldehyde dehydrogenase 2 (Raldh2) gene. Both approaches clearly improved the Por(-/-) early phenotype, the latter allowing mutants to be recovered up until E13.5. Abnormal brain patterning, with posteriorization of hindbrain cell fates and defective mid- and forebrain development and vascular defects were rescued in E9.5 Por(-/-) embryos. E13.5 Por(-/-); Raldh2(+/-) embryos exhibited abdominal/caudal and limb defects that strikingly phenocopy those of Cyp26a1(-/-) and Cyp26b1(-/-) mutants, respectively. Por(-/-); Raldh2(+/-) limb buds were truncated and proximalized and the anterior-posterior patterning system was not established. Thus, POR function is indispensable for the proper regulation of RA levels and tissue distribution not only during early embryonic development but also in later morphogenesis and molecular patterning of the brain, abdominal/caudal region and limbs.  相似文献   

14.
15.
The newt is one of the few organisms that is able to undergo lens regeneration as an adult. This review will examine the signaling pathways that are involved in this amazing phenomenon. In addition to outlining the current research involved in elucidating the key signaling molecules in lens regeneration, we will also highlight some of the similarities and differences between lens regeneration and development.  相似文献   

16.
Retinoic acid (RA) has been detected in the regenerating limb of the axolotl, and exogenous RA can proximalize, posteriorize, and ventralize blastemal cells. Thus, RA may be an endogenous regulatory factor during limb regeneration. We have investigated whether endogenous retinoids are essential for patterning during axolotl (Ambystoma mexicanum) limb regeneration by using retinoid antagonists that bind to specific RAR (retinoic acid receptor) or RXR (retinoid X receptor) retinoid receptor subtypes. Retinoid antagonists (Ro41-5253, Ro61-8431, LE135, and LE540) were administered to regenerating limbs using implanted silastin blocks loaded with each antagonist. The skeletal pattern of regenerated limbs treated with Ro41-5253 or Ro61-8431 differed only slightly from control limbs. Treatment with LE135 inhibited limb regeneration, while treatment with LE540 allowed relatively normal limb regeneration. When LE135 and LE540 were implanted together, regeneration was not completely inhibited and a hand-like process regenerated. These results demonstrate that interfering with retinoid receptors can modify pattern in the regenerating limb indicating that endogenous retinoids are important during patterning of the regenerating limb.  相似文献   

17.
Neurofilament (NF) proteins are distributed in a diminishing proximodistal gradient along rat sciatic nerve when compared with total noncollagen or other proteins in nerve. About a twofold decline of NF proteins can be detected by quantitating nerve proteins that have been separated by gel electrophoresis. A similar decrease of immunoreactivity to each NF subunit is seen in distal nerve segments when noncollagen nerve proteins are immunoblotted. Parallel decreases occur in all three NF proteins, thereby maintaining neurofilament subunit stoichiometry along the neuraxis. The same NF gradient can be detected when the NF contents in nerve branches to the gluteus and gastrocnemius muscles are compared with each other and with those in nerve segments taken from the same proximodistal levels of the parent sciatic nerve. The gradient of NF proteins increases during postnatal development and is readily detected by postnatal day 16. During the same period of development, the heavy NF subunit appears for the first time and is rapidly incorporated throughout the sciatic nerve. Hence, the NF gradient becomes manifest during the development and maturation of the adult form of the axonal cytoskeleton. The basis for the proximodistal gradient of NF proteins in peripheral nerve is presently unknown. The extent of the gradient cannot be accounted for on the basis of diminishing numbers of nerve fibers or increasing amounts of other nerve proteins, e.g., collagen, in distal nerve. An alternative interpretation is that the gradient reflects a low level of NF protein turnover during axonal transport.  相似文献   

18.
Summary Fine structural observations were made on the vesicle and granule content of ganglion cells in the posterior subclavian ganglion and peripheral nerve fibers of the upper forelimb of the newt Triturus. The populations of vesicles and granules in normal ganglion cells and nerve fibers were compared with those observed after limb transection. In normal neurons, clear vesicles range in size from 250 to 1000 Å in diameter, but are most frequently 400–500 Å. Vesicles with dense contents (granules) also vary greatly in size, but most are 450–550 Å in diameter and correspond to dense-core vesicles. Large granules that contain acid phosphatase activity are thought to be lysosomes. During limb regeneration, in both the ganglion cells and peripheral nerves, the ratio of dense vesicles to clear vesicles increases. There is a large increase in number of dense granules with a diameter over 800 Å, particularly in the peripheral regenerating fibers. This study shows that regenerating neurons differ from normal in their content of vesicular structures, especially large, membrane-bounded granules.This work was supported by grants from the National Science Foundation (GB 7912) and from the National Cancer Institute (TICA-5055), National Institutes of Health, United States Public Health Service.  相似文献   

19.
Summary Non-encapsulated, fine beaded nerve endings were found histologically on some muscle fibres in a number of limb muscles in newts and axolotls. They were present in newt muscles that had been chronically de-efferented, and in which no efferent activity survived, and were therefore likely to be sensory. They were located only on muscle fibres on or near the outside surface of the muscle. These small-diameter muscle fibres were characterised histochemically by low lipid, SDH and phosphorylase content; ultrastructurally by low glycogen content, and relatively large myofilaments poorly delimited by a sparse SR. There were many of this type (Type 1) that did not support sensory endings. A few endings occurred on another larger-diameter type of fibre (Type 2) whose properties were opposite to those listed above for Type 1. There was virtually no specialization of muscle fibre structure beneath the sensory endings.Physiological experiments involving ramp-and-hold and sinusoidal stretch applied to the muscle whilst recording single-unit afferent responses in m.ext. dig. III of axolotls showed unit responses very similar to those known from muscle spindles, particularly those of the frog.We are grateful to the M.R.C. for an equipment grant (to R.M.A.P.R.), and to Mrs. Janis Taberner for her technical help. Part of this work was done during the tenure of a Nuffield-NRC Lectureship (Q.B.) which is gratefully acknowledged, as is financial support by Prof. J.R. Nussall during a visit to the University of Alberta at Edmonton.  相似文献   

20.
Blastema formation, the initial stage of epimorphic limb regeneration in amphibians, is an essential process to produce regenerates. In our study on nerve dependency of blastema formation, we used forelimb of Xenopus laevis froglets as a system and applied some histological and molecular approaches in order to determine early events during blastema formation. We also investigated the lateral wound healing in comparison to blastema formation in limb regeneration. Our study confirmed at the molecular level that there are nerve-dependent and -independent events during blastema formation after limb amputation, Tbx5 and Prx1, reliable markers of initiation of limb regeneration, that start to be expressed independently of nerve supply, although their expressions cannot be maintained without nerve supply. We also found that cell proliferation activity, cell survival and expression of Fgf8, Fgf10 and Msx1 in the blastema were affected by denervation, suggesting that these events specific for blastema outgrowth are controlled by the nerve supply. Wound healing, which is thought to be categorized into tissue regeneration, shares some nerve-independent events with epimorphic limb regeneration, although the healing process results in simple restoration of wounded tissue. Overall, our results demonstrate that dedifferentiated blastemal cells formed at the initial phase of limb regeneration must enter the nerve-dependent epimorphic phase for further processes, including blastema outgrowth, and that failure of entry results in a simple redifferentiation as tissue regeneration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号