首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Poly(A) can be added to mRNAs both in the nucleus and in the cytoplasm. During oocyte maturation and early embryonic development, cytoplasmic polyadenylation of preexisting mRNAs provides a common mechanism of translational control. In this report, to begin to understand the regulation of polyadenylation activities during early development, we analyze poly (A) polymerases (PAPs) in oocytes and early embryos of the frog, Xenopus laevis. We have cloned and sequenced a PAP cDNA that corresponds to a maternal mRNA present in frog oocytes. This PAP is similar in size and sequence to mammalian nuclear PAPs. By immunoblotting using monoclonal antibodies raised against human PAP, we demonstrate that oocytes contain multiple forms of PAP that display different electrophoretic mobilities. The oocyte nucleus contains primarily the slower migrating forms of PAP, whereas the cytoplasm contains primarily the faster migrating species. The nuclear forms of PAP are phosphorylated, accounting for their retarded mobility. During oocyte maturation and early postfertilization development, preexisting PAPs undergo regulated phosphorylation and dephosphorylation events. Using the cloned PAP cDNA, we demonstrate that the complex changes in PAP forms seen during oocyte maturation may be due to modifications of a single polypeptide. These results demonstrate that the oocyte contains a cytoplasmic polymerase closely related to the nuclear enzyme and suggest models for how its activity may be regulated during early development.  相似文献   

2.
Proliferating cell nuclear antigen (PCNA/cyclin) is a 36-kDa polypeptide present in the nuclei of mitotically active cells. It is known to be involved in DNA replication through an association with DNA polymerase δ. We examined the total content as well as the subcellular distribution of PCNA in the oocyte and the egg of Xenopus laevis by employing immunocytological staining and immunoblot analysis. While oocytes are not capable of replicating chromosomes, PCNA is abundant in the nucleus (about 65 ng per nucleus). The oocyte cytoplasm, on the other hand, does not contain a significant quantity of this protein. The amount of total PCNA does not change appreciably during oocyte maturation and the subsequent stages of egg cleavage. Thus, PCNA belongs to a class of proteins which are stockpiled during oogenesis in order to be utilized later for early embryogenesis.  相似文献   

3.
In the course of chick neural retina development, several forms of DNA ligase have been found. During embryonic life the major DNA ligase activity that is found at seven days is form I (8.2 S) which gradually decreases and disappears by 14 days after incubation, whereas form II (6.2 S) increases to reach a maximum at the time of hatching. Form II then decreases reaching a constant level by Day 7 and from that time new slow sedimenting forms also appear (forms III and IV). Form III(2 S) is first detectable at seven days and increases up to 90 days, whereas form IV (3 S) is the only form detected in the 17- and 18-month-old and also in the 5-year-old birds. These four forms display different elution patterns on phosphocellulose column chromatography. They also differ in their thermal stability and sensitivity towards N-ethylmaleimide.  相似文献   

4.
Changes of DNA Ligases in Chick Neural Retina as a Function of Age   总被引:2,自引:0,他引:2  
In the course of chick neural retina development, several forms of DNA ligase have been found. During embryonic life the major DNA ligase activity that is found at seven days is form I (8.2 S) which gradually decreases and disappears by 14 days after incubation, whereas form II (6.2 S) increases to reach a maximum at the time of hatching. Form II then decreases reaching a constant level by Day 7 and from that time new slow sedimenting forms also appear (forms III and IV). Form III (2 S) is first detectable at seven days and increases up to 90 days, whereas form IV (3 S) is the only form detected in the 17- and 18-month-old and also in the 5-year-old birds. These four forms display different elution patterns on phosphocellulose column chromatography. They also differ in their thermal stability and sensitivity towards N-ethylmaleimide.  相似文献   

5.
6.
7.
DNA-dependent RNA polymerase was extracted from oocytes of the frog, Rana pipiens. The bulk of the enzyme activity was present in the germinal vesicle and the amounts of each major form of such activity did not significantly change during oocyte maturation. Therefore, either nuclear polymerase activity is conserved after breakdown of the oocyte nucleus during maturation or, alternatively, de novo synthesis of the enzymes must occur during oocyte maturation concomitant with degradation. We have measured rates of protein synthesis in oocytes and determined a maximum rate of synthesis for RNA polymerases. Our kinetic studies show that no more than 20, 10, and 5% of RNA polymerases type I, IIa, and IIb, respectively, could be synthesized during steroid-induced oocyte maturation. These results thus show that the bulk of RNA polymerase accumulates in the germinal vesicle during oogenesis, is dispersed into the cytoplasm during maturation, and, since only limited synthesis seems to be occurring, the polymerase is available during embryogenesis.  相似文献   

8.
9.
10.
Proliferating cell nuclear antigen (PCNA/cyclin) is a 36-kDa polypeptide present in the nuclei of mitotically active cells. It is known to be involved in DNA replication through an association with DNA polymerase delta. We examined the total content as well as the subcellular distribution of PCNA in the oocyte and the egg of Xenopus laevis by employing immunocytological staining and immunoblot analysis. While oocytes are not capable of replicating chromosomes, PCNA is abundant in the nucleus (about 65 ng per nucleus). The oocyte cytoplasm, on the other hand, does not contain a significant quantity of this protein. The amount of total PCNA does not change appreciably during oocyte maturation and the subsequent stages of egg cleavage. Thus, PCNA belongs to a class of proteins which are stockpiled during oogenesis in order to be utilized later for early embryogenesis.  相似文献   

11.
小鼠母源因子对早期胚胎发育的影响   总被引:3,自引:0,他引:3  
在脊椎动物中发育过程中,卵母细胞要经历MII期停滞、受精、早期胚胎发育的启动、胚胎基因组的转录激活、并指导完成个体的发育过程。同时,核移植过程中,分化的细胞核在去核的卵母细胞中能够重编程到胚胎早期的状态并能完成个体的发育过程。在这些发育过程中母源因子都发挥了极其的重要作用。在小鼠胚胎发育研究中发现,小鼠的基因组激活发生在2细胞期,这一时期标志着合子的发育由卵母细胞控制向胚胎控制的过渡,期间发生一系列复杂的生化过程。体外培养的小鼠的胚胎的发育阻断也易发生的2细胞时期。因此对卵母细胞及早期胚胎母源因子的研究,将有利于了解早期体外培养胚胎和克隆胚胎发育失败的原因,为提高体外培养和克隆胚胎发育的成功率提供理论的基础。  相似文献   

12.
In the process of nuclear transfer, heteroplasmic sources of mitochondrial DNA from a donor cell and a recipient oocyte are mixed in the cytoplasm of the reconstituted embryo. The distribution of mitochondrial DNA heteroplasmy in nuclear transfer bovine embryos and resultant offspring was investigated by measuring polymorphism in the displacement loop region of mitochondrial DNA using PCR-mediated single-strand conformation polymorphism. Most offspring (20 of 21 calves) from recipient oocytes of undefined mitochondrial DNA genotypes showed different genotypes from the mitochondrial DNA of donor cells. The single calf that was an exception showed heteroplasmy, including the donor mitochondrial DNA genotype. Six cloned calves were produced from oocytes of a defined mitochondrial DNA genotype. All of these clonal members and various tissues showed only the mitochondrial DNA genotype derived from the oocyte. The mitochondrial DNA from donor cells appeared to be eliminated during early embryonic development; it gradually decreased at the early cleavage stages and was hardly detectable by the blastocyst stage. These results indicate that the genotype of mitochondrial DNA from recipient oocytes may become the dominant category of mitochondrial DNA in calves resulting from nuclear transfer.  相似文献   

13.
Regulation of simian virus 40 gene expression in Xenopus laevis oocytes.   总被引:4,自引:0,他引:4  
Expression of the simian virus 40 (SV40) early and late regions was examined in Xenopus laevis oocytes microinjected with viral DNA. In contrast to the situation in monkey cells, both late-strand-specific (L-strand) RNA and early-strand-specific (E-strand) RNA could be detected as early as 2 h after injection. At all time points tested thereafter, L-strand RNA was synthesized in excess over E-strand RNA. Significantly greater quantities of L-strand, relative to E-strand, RNA were detected over a 100-fold range of DNA concentrations injected. Analysis of the subcellular distribution of [35S]methionine-labeled viral proteins revealed that while the majority of the VP-1 and all detectable small t antigen were found in the oocyte cytoplasm, most of the large T antigen was located in the oocyte nucleus. The presence of the large T antigen in the nucleus led us to investigate whether this viral product influences the relative synthesis of late or early RNA in the oocyte as it does in infected monkey cells. Microinjection of either mutant C6 SV40 DNA, which encodes a large T antigen unable to bind specifically to viral regulatory sequences, or deleted viral DNA lacking part of the large T antigen coding sequences yielded ratios of L-strand to E-strand RNA that were similar to those observed with wild-type SV40 DNA. Taken together, these observations suggest that the regulation of SV40 RNA synthesis in X. laevis oocytes occurs by a fundamentally different mechanism than that observed in infected monkey cells. This notion was further supported by the observation that the major 5' ends of L-strand RNA synthesized in oocytes were different from those detected in infected cells. Furthermore, only a subset of those L-strand RNAs were polyadenylated.  相似文献   

14.
15.
Monomethylated cap structures facilitate RNA export from the nucleus   总被引:71,自引:0,他引:71  
J Hamm  I W Mattaj 《Cell》1990,63(1):109-118
RNA export from the nucleus has been analyzed in Xenopus oocytes. U1 snRNAs made by RNA polymerase II were exported into the cytoplasm, while U1 snRNAs synthesized by RNA polymerase III, and therefore with a different cap structure, remained in the nucleus. Export of the polymerase II-transcribed RNAs was inhibited by the cap analog m7GpppG. Spliced mRNAs carrying monomethylguanosine cap structures were rapidly exported, while hypermethylated cap structures delayed mRNA export. The export of a mutant precursor mRNA unable to form detectable splicing complexes was also significantly delayed by incorporation of a hypermethylated cap structure. The results suggest that the m7GpppN cap structure is likely to be a signal for RNA export from the nucleus.  相似文献   

16.
The culture of pig oocytes in the presence of the calcium channel blocker verapamil (0.02 mM) resulted in the blocking of meiosis at the metaphase I stage, and only a small fraction (about 28%) of the oocytes were able to continue their maturation to the stage of metaphase II. Hence, meiotic maturation in pig oocytes is a calcium-dependent process. After isolation of the pig oocytes from their follicles, the intracellular calcium deposits in the oocyte and granulosa cells, detectable using the combined oxalate-pyroantimonate method, are depleted. The amount of calcium deposits in the oocyte and granulosa cells increased during oocyte meiotic maturation in vitro, especially in the nucleus, mitochondria, vacuoles and cytoplasm. The replenishment of calcium deposits is significantly changed under the effect of verapamil. The increase in calcium deposits in the oocyte nucleus was delayed, a much larger amount of deposits was formed in the mitochondria, and the amount of deposits in the vacuoles was demonstrably smaller. A significant peak in the accumulation of calcium deposits was observed in the cytoplasm of verapamil-treated oocytes after 16 h of in vitro culture. We propose that an altered pattern in the replenishment of calcium deposits can disturb intracellular signalling and prevent the exit of oocytes from the metaphase I stage.  相似文献   

17.
The amounts of the various forms of DNA polymerase (alpha 1, alpha 2, beta, and gamma) have been determined in oocytes, eggs, and embryos of the frog, Xenopus laevis. During oogenesis the relative proportions and absolute levels of all forms changed dramatically. In stage I (early) oocytes, DNA polymerase-gamma, the "mitochondrial" polymerase, was the predominant form. During oocyte growth, DNA polymerase-alpha 1 and -alpha 2 increased by more than 100-fold, DNA polymerase-beta by 15-fold, and DNA polymerase-gamma by only 8-fold. During oocyte maturation and ovulation, the levels of all forms of DNA polymerase roughly doubled. The mature stage VI oocyte contained 5 orders of magnitude more DNA polymerase activity than is found in an individual somatic cell. DNA polymerase-alpha 1 and -alpha 2, the "replicative" polymerases, were the predominant forms in mature oocytes and ovulated unfertilized eggs. During fertilization, the relative proportions and absolute levels of the four forms remained constant. During subsequent stages of embryogenesis, the total amounts of DNA polymerase-alpha 1 and -alpha 2 declined slightly from cleavage through gastrulation, the stages of most rapid chromosomal DNA replication. The rapid increase in cell number during early embryogenesis establishes the same levels of DNA polymerase/cell as are present in adult somatic cells. After neurulation, the absolute levels of DNA polymerase-alpha 1 and -alpha 2 increased in proportion to increases in cell number. The absolute levels of DNA polymerase-beta remained constant, and the levels of DNA polymerase-gamma increased 2-fold throughout embryogenesis.  相似文献   

18.
19.
20.
The synthesis and storage of histones during the oogenesis of Xenopus laevis   总被引:23,自引:0,他引:23  
Further data, including two-dimensional gel electrophoresis and peptide mapping of newly synthesized proteins, confirms the view that oocytes make several types of histone. The newly synthesized histone is present in both nucleus and cytoplasm, but at a higher concentration in the oocyte nucleus and in great excess over the DNA binding sites. The unfertilized egg seems to contain a pool of histones detectable on two-dimensional electrophoretograms. The peptide maps of these proteins are consistent with their identification as histones. The egg contains enough histone to support nuclear replication through most of cleavage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号