首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Apolipophorin III (apoLp-III) is an exchangeable apolipoprotein whose structure is represented as a bundle of five amphipathic alpha-helices. In order to study the properties of the helical domains of apolipophorin III, we designed and obtained five single-tryptophan mutants of Locusta migratoria apoLp-III. The proteins were studied by UV absorption spectroscopy, time-resolved and steady-state fluorescence spectroscopy, and circular dichroism. Fluorescence anisotropy, near-UV CD and solute fluorescence quenching studies indicate that the Trp residues in helices 1 (N-terminal) and 5 (C-terminal) have the highest conformational flexibility. These two residues also showed the highest degree of hydration. Trp residues in helices 3 and 4 display the lowest mobility, as assessed by fluorescence anisotropy and near UV CD. The Trp residue in helix 2 is protected from the solvent but shows high mobility. As inferred from the properties of the Trp residues, helices 1 and 5 appear to have the highest conformational flexibility. Helix 2 has an intermediate mobility, whereas helices 3 and 4 appear to constitute a highly ordered domain. From the configuration of the helices in the tertiary structure of the protein, we estimated the relative strength of the five interhelical interactions of apoLp-III. These interactions can be ordered according to their apparent stabilizing strengths as: helix 3-helix 4 > helix 2-helix 3 > helix 4-helix 1 approximately helix 2-helix 5 > helix 1-helix 5. A new model for the conformational change that is expected to occur upon binding of the apolipoprotein to lipid is proposed. This model is significantly different from the currently accepted model (Breiter, D. R., Kanost, M. R., Benning, M. M., Wesemberg, G., Law, J. H., Wells, M. A., Rayment, I., and Holden, M. (1991) Biochemistry 30, 603-608). The model presented here predicts that the relaxation of the tertiary structure and the concomitant exposure of the hydrophobic core take place through the disruption of the weak interhelical contacts between helices 1 and 5. To some extent, the weakness of the helix 1-helix 5 interaction would be due to the parallel arrangement of these helices.  相似文献   

2.
Pal L  Basu G  Chakrabarti P 《Proteins》2002,48(3):571-579
An analysis of the shortest 3(10)-helices, containing three helical residues and two flanking capping residues that participate in two consecutive i + 3 --> i hydrogen bonds, shows that not all helices belong to the classic 3(10)-helix, where the three central residues adopt the right-handed helical conformation (alpha(R)). Three variants identified are: 3L10-helix with all residues in the left-handed helical region (alpha(L)), 3EL10-helix where the first residue is in the extended region followed by two residues in the alpha(L) conformation, and its mirror-image, the 3E'R10-helix. In the context of these helices, as well as the equivalent variants of alpha-helices, the length dependence of the handedness of secondary structures in protein structure is discussed. There are considerable differences in the amino acid preferences at different positions in the various types of 3(10)-helices. Each type of 3(10)-helix can be thought to be made up of an extension of a particular type of beta-turn (made up of residues i to i + 3) such that the (i + 3)th residue assumes the same conformation as the preceding residue. Distinct residue preferences at i and i + 3 positions seem to decide whether a particular stretch of four residues will be a beta-turn or a 3(10)-helix in the folded structure.  相似文献   

3.
H Morii  K Ichimura  H Uedaira 《Proteins》1991,11(2):133-141
The inclusion feature and supersecondary structure of the de novo designed proteins which are constructed with several amphiphilic alpha-helices and flexible linkage parts were investigated with fluorescence probes. Five types of small proteins (or peptides) have been designed, which are composed of 2, 3, 4, 4, and 6 helices, respectively, and are linked with only linear junctions except for one of 4-helix proteins. All of these proteins have inclusion ability for hydrophobic fluorophores. Further, by the analysis of fluorescence polarization anisotropy, it was suggested that these proteins include guest molecules in compact helix bundles constructed with about 4 helices. Asymmetric inclusion of both monomer and stacked dimer of acridine orange derivatives was found by means of induced circular dichroism except for the 4-helix protein with cross-junction. The chirality of the included dimer proved to be in accordance with the chiral sense of alpha-helical coiled-coil. The 6-helix protein has especially high efficiency in inclusion for any fluorophores examined in this study and brings about a significant blue-shift of maximal emission for 8-anilino-1-naphthalenesulfonate.  相似文献   

4.
δ-Helices are marginally hydrophobic α-helical segments in soluble proteins that exhibit certain sequence characteristics of transmembrane (TM) helices [Cunningham, F., Rath, A., Johnson, R. M. & Deber, C. M. (2009). Distinctions between hydrophobic helices in globular proteins and TM segments as factors in protein sorting. J. Biol. Chem., 284, 5395-402]. In order to better understand the difference between δ-helices and TM helices, we have studied the insertion of five TM-like δ-helices into dog pancreas microsomal membranes. Using model constructs in which an isolated δ-helix is engineered into a bona fide membrane protein, we find that, for two δ-helices originating from secreted proteins, at least three single-nucleotide mutations are necessary to obtain efficient membrane insertion, whereas one mutation is sufficient in a δ-helix from the cytosolic protein P450BM-3. We further find that only when the entire upstream region of the mutated δ-helix in the intact cytochrome P450BM-3 is deleted does a small fraction of the truncated protein insert into microsomes. Our results suggest that upstream portions of the polypeptide, as well as embedded charged residues, protect δ-helices in globular proteins from being recognized by the signal recognition particle-Sec61 endoplasmic-reticulum-targeting machinery and that δ-helices in secreted proteins are mutationally more distant from TM helices than δ-helices in cytosolic proteins.  相似文献   

5.
A monomeric four-α-helix bundle protein Aα(4) was designed as a step towards investigating the interaction of volatile general anesthetics with their putative membrane protein targets. The alpha helices, connected by glycine loops, have the sequence A, B, B', A'. The DNA sequence was designed to make the helices with the same amino acid sequences (helix A and A', B and B', respectively) as different as possible, while using codons which are favorable for expression in E. coli. The protein was bacterially expressed and purified to homogeneity using reversed-phase HPLC. Protein identity was verified using MALDI-TOF mass spectrometry. Far-UV circular dichroism spectroscopy confirmed the predominantly alpha-helical nature of the protein Aα(4). Guanidinium chloride induced denaturation showed that the monomeric four-α-helix bundle protein Aα(4) is considerably more stable compared to the dimeric di-α-helical protein (Aα(2)-L38M)(2). The sigmoidal character of the unfolding reaction is conserved while the sharpness of the transition is increased 1.8-fold. The monomeric four-α-helix bundle protein Aα(4) bound halothane with a dissociation constant (K(d)) of 0.93±0.02mM, as shown by both tryptophan fluorescence quenching and isothermal titration calorimetry. This monomeric four-α-helix bundle protein can now be used as a scaffold to incorporate natural central nervous system membrane protein sequences in order to examine general anesthetic interactions with putative targets in detail.  相似文献   

6.
A survey of literature for the various types of helices experimentally observed in high-resolution single crystal x-ray diffraction analyses of peptides has allowed to determine accurate conformational and helical parameters for the various secondary structures such as the alpha-helix, the 3(10)-helix, the fully extended conformation (2(5)-helix) and the beta-bend ribbon spiral. For each of these structures the characteristic phi, psi conformational parameters, n, the number of residues per turn, h, the height per residues and p, the pitch of the helix are described.  相似文献   

7.
To investigate the role of α helices in protein thermostability, we compared energy characteristics of α helices from thermophilic and mesophilic proteins belonging to four protein families of known three-dimensional structure, for at least one member of each family. The changes in intrinsic free energy of α-helix formation were estimated using the statistical mechanical theory for describing helix/coil transitions in peptide helices [Munoz, V., Serrano, L. Nature Struc. Biol. 1:399–409, 1994; Munoz, V., Serrano, L. J. Mol. Biol. 245:275–296, 1995; Munoz, V., Serrano, L. J. Mol. Biol. 245:297–308, 1995]. Based on known sequences of mesophilic and thermophilic RecA proteins we found that (1) a high stability of α helices is necessary but is not a sufficient condition for thermostability of RecA proteins, (2) the total helix stability, rather than that of individual helices, is the factor determining protein thermostability, and (3) two facets of intrahelical interactions, the intrinsic helical propensities of amino acids and the side chain–side chain interactions, are the main contributors to protein thermostability. Similar analysis applied to families of L-lactate dehydrogenases, seryl-tRNA synthetases, and aspartate amino transferases led us to conclude that an enhanced total stability of α helices is a general feature of many thermophilic proteins. The magnitude of the observed decrease in intrinsic free energy on α-helix formation of several thermoresistant proteins was found to be sufficient to explain the experimentally determined increase of their thermostability. Free energies of intrahelical interactions of different RecA proteins calculated at three temperatures that are thought to be close to its normal environmental conditions were found to be approximately equal. This indicates that certain flexibility of RecA protein structure is an essential factor for protein function. All RecA proteins analyzed fell into three temperature-dependent classes of similar α-helix stability (ΔGint = 45.0 ± 2.0 kcal/mol). These classes were consistent with the natural origin of the proteins. Based on the sequences of protein α helices with optimized arrangement of stabilizing interactions, a natural reserve of RecA protein thermoresistance was estimated to be sufficient for conformational stability of the protein at nearly 200°C. Proteins 29:309–320, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

8.
The glycerol-3-phosphate transporter (GlpT) is a member of the major facilitator superfamily (MFS). GlpT is an organic phosphate/inorganic phosphate antiporter. It shares a similar fold with other MFS transporters (e.g. LacY and EmrD) consisting of 12 transmembrane (TM) helices which form two domains (each of six TM helices) surrounding a central ligand-binding cavity. The TM helices (especially the cavity-lining helices) contain a large number of proline and glycine residues, which may aid in the conformational changes believed to underline the transport mechanism. Molecular dynamics simulations in a phospholipid bilayer have been used to compare the conformational properties of the isolated TM helices with those in the intact GlpT protein. Analysis of these simulations focuses on the role of proline-induced flexibility in the TM helices. Our results are consistent with the proposed rocker switch mechanism for transport by GlpT. In particular, the simulations highlight the cavity-lining helices (H4, H5, H10 and H11) as being significantly flexible, suggesting that the transport mechanism may involve intra-helix motions in addition to pseudo-rigid body motions of the N- and C-terminal domains relative to one another.  相似文献   

9.
The HIV-1 frameshift site (FS) plays a critical role in viral replication. During translation, the HIV-1 FS transitions from a 3-helix to a 2-helix junction RNA secondary structure. The 2-helix junction structure contains a GGA bulge, and purine-rich bulges are common motifs in RNA secondary structure. Here, we investigate the dynamics of the HIV-1 FS 2-helix junction RNA. Interhelical motions were studied under different ionic conditions using NMR order tensor analysis of residual dipolar couplings. In 150 mM potassium, the RNA adopts a 43°(±4°) interhelical bend angle (β) and displays large amplitude, anisotropic interhelical motions characterized by a 0.52(±0.04) internal generalized degree of order (GDOint) and distinct order tensor asymmetries for its two helices (η = 0.26(±0.04) and 0.5(±0.1)). These motions are effectively quenched by addition of 2 mM magnesium (GDOint = 0.87(±0.06)), which promotes a near-coaxial conformation (β = 15°(±6°)) of the two helices. Base stacking in the bulge was investigated using the fluorescent purine analog 2-aminopurine. These results indicate that magnesium stabilizes extrahelical conformations of the bulge nucleotides, thereby promoting coaxial stacking of helices. These results are highly similar to previous studies of the HIV transactivation response RNA, despite a complete lack of sequence similarity between the two RNAs. Thus, the conformational space of these RNAs is largely determined by the topology of their interhelical junctions.  相似文献   

10.
L Pal  G Basu 《Protein engineering》1999,12(10):811-814
The 3(10)-helix constitutes a small but significant fraction of secondary structural elements in proteins. Protein data base surveys have shown these helices to be present as alpha-helical extensions, in loops and as connectors between beta-strands. The present work focuses on two-turn and longer 3(10)-helices where we establish that two-turn and longer 3(10) helices, unlike the more abundant single-turn 3(10)-helices, frequently occur independent of any other contiguous secondary structural elements. More importantly, a large fraction of these independent two-turn and longer 3(10)-helices, along with alpha-helices and beta-strands, are found to form novel super-secondary structural motifs in several proteins with possible implications for protein folding, local conformational relaxation and biological functions.  相似文献   

11.
Some properties of α-helices of polyclycine and polyalanine, up to the decapeptide, were investigated by ab initio molecular-orbital calculations. These helices were found to be unstable relative to the corresponding “fully extended chain” conformation. The electric field of helices of 8–10 residues is about 20% stronger than that of models built from noninteracting monomers, for example. This is a result of cooperativity, which is essentially governed by the intramolecular hydrogen bonds. The cooperativity is manifest in all properties of the helices: relative stability, dipole moment, proton affinity, electrical potential. The electric potential of helices of three and four residues is such that their instability can be compensated for by a single charged group acting as an “initiator.” The computed proton affinity of the (Ala)8 α-helix is about 45 kcal/mol larger than that of formamide, which confirms that long helices may be protonated at the carboxyl end in solution.  相似文献   

12.
The formation of α-helical assembly by complexing biologically active peptides with de novo designed protein is described. The de novo designed protein described here is a cystinelinked 4-helix bundle protein constructed with 80 amino acid residues and forms a hydrophobic core region surrounded by 4 helices in an aqueous solution. The biologically active peptides, such as melittin and human growth hormone releasing factor, contain the sequences that are able to form amphiphilic helices. These peptides alone do not form the α-helix structure in a diluted solution with low ion strength. But on mixing with the designed helix bundle protein, the peptides are strongly bound to the protein with the induction of α-helical structure in the biologically active peptides. The content of induced α-helix is in accord with that estimated from the amphiphilic sequence. The results mean that a novel architecture composed of α-helices is formed. Fluorescent and temperature-scanning measurement revealed that the α-helical assembly is constructed with hydrophobic interaction. Also, it is shown by means of fluorescence depolarization that the assembly has a compact globular form corresponding to 1 : 1 complex. © 1994 John Wiley & Sons, Inc.  相似文献   

13.
The family of P-loop channels, which play key roles in the cell physiology, is characterized by four membrane re-entering extracellular P-loops that connect eight transmembrane helices of the pore-forming domain. The X-ray and cryo-EM structures of the open- and closed-state channels show conserved state-dependent folding despite the sequences are very diverse. In sodium, calcium, TRPV and two-pore channels, the pore-lining helices contain conserved asparagines and may or may not include π-helix bulges. Comparison of the sequence- and 3D-alignemnts suggests that the asparagines appeared in evolution as insertions that are accommodated in two ways: by π-helix bulges, which preserve most of inter-segment contacts, or by twists of the C-terminal thirds and switch of inter-segment contacts. The two possibilities should be considered in homology modeling of ion channels and in structure-based interpretations of numerous experimental data on physiology, pathophysiology, pharmacology and toxicology of the channels.  相似文献   

14.
We report a comprehensive analysis of the numbers, lengths and amino acid compositions of transmembrane helices in 235 high-resolution structures of integral membrane proteins. The properties of 1551 transmembrane helices in the structures were compared with those obtained by analysis of the same amino acid sequences using topology prediction tools. Explanations for the 81 (5.2%) missing or additional transmembrane helices in the prediction results were identified. Main reasons for missing transmembrane helices were mis-identification of N-terminal signal peptides, breaks in α-helix conformation or charged residues in the middle of transmembrane helices and transmembrane helices with unusual amino acid composition. The main reason for additional transmembrane helices was mis-identification of amphipathic helices, extramembrane helices or hairpin re-entrant loops. Transmembrane helix length had an overall median of 24 residues and an average of 24.9 ± 7.0 residues and the most common length was 23 residues. The overall content of residues in transmembrane helices as a percentage of the full proteins had a median of 56.8% and an average of 55.7 ± 16.0%. Amino acid composition was analysed for the full proteins, transmembrane helices and extramembrane regions. Individual proteins or types of proteins with transmembrane helices containing extremes in contents of individual amino acids or combinations of amino acids with similar physicochemical properties were identified and linked to structure and/or function. In addition to overall median and average values, all results were analysed for proteins originating from different types of organism (prokaryotic, eukaryotic, viral) and for subgroups of receptors, channels, transporters and others.  相似文献   

15.
The 3(10)-helix is characterized by having at least two consecutive hydrogen bonds between the main-chain carbonyl oxygen of residue i and the main-chain amide hydrogen of residue i + 3. The helical parameters--pitch, residues per turn, radius, and root mean square deviation (rmsd) from the best-fit helix--were determined by using the HELFIT program. All 3(10)-helices were classified as regular or irregular based on rmsd/(N - 1)1/2 where N is the helix length. For both there are systematic, position-specific shifts in the backbone dihedral angles. The average phi, psi shift systematically from approximately -58 degrees, approximately -32 degrees to approximately -90 degrees, approximately -4 degrees for helices 5, 6, and 7 residues long. The same general pattern is seen for helices, N = 8 and 9; however, in N = 9, the trend is repeated with residues 6, 7, and 8 approximately repeating the phi, psi of residues 2, 3, and 4. The residues per turn and radius of regular 3(10)-helices decrease with increasing length of helix, while the helix pitch and rise per residue increase. That is, regular 3(10)-helices become thinner and longer as N increases from 5 to 8. The fraction of regular 3(10)-helices decreases linearly with helix length. All longer helices, N > or = 9 are irregular. Energy minimizations show that regular helices become less stable with increasing helix length. These findings indicate that the definition of 3(10)-helices in terms of average, uniform dihedral angles is not appropriate and that it is inherently unstable for a polypeptide to form an extended, regular 3(10)-helix. The 3(10)-helices observed in proteins are better referred to parahelices.  相似文献   

16.
Protein secondary structure elements are arranged in distinct structural motifs such as four-α-helix bundle, 8α/8β TIM-barrel, Rossmann dinucleotide binding fold, assembly of a helical rod. Each structural motif is characterized by a particular type of helix-helix interactions. A unique pattern of contacts is formed by interacting helices of the structural motif. In each type of fold, edges of the helix surface, which participate in the formation of helix-helix contacts with preceding and following helices, differ. This work shows that circular arrangements of the four, eight, and sixteen α-helices, which are found in the four-α-helical motif, TIM-barrel 8α/8β fold, and helical rod of 16.3¯ helices per turn correspondingly, can be associated with the mutual positioning of the edges of the helix surfaces. Edges (i, i+1)−(i+1, i+2) of the helix surface are central for the interhelical contacts in a four-α-helix bundle. Edges (i, i+1)−(i+2, i+3) are involved in the assembly of four-α-helix subunits into helical rod of a tobacco mosaic virus and a three-helix fragment of a Rossmann fold. In 8α/8β TIM-barrel fold, edges (i, i+1)−(i+5, i+6) are involved in the octagon arrangement. Approximation of a cross section of each motif with a polygon (n-gon, n=4, 8, 16) shows that a good correlation exists between polygon interior angles and angles formed by the edges of helix surfaces.  相似文献   

17.
Talin is an adaptor protein that couples integrins to F-actin. Structural studies show that the N-terminal talin head contains an atypical FERM domain, whereas the N- and C-terminal parts of the talin rod include a series of α-helical bundles. However, determining the structure of the central part of the rod has proved problematic. Residues 1359–1659 are homologous to the MESDc1 gene product, and we therefore expressed this region of talin in Escherichia coli. The crystal structure shows a unique fold comprised of a 5- and 4-helix bundle. The 5-helix bundle is composed of nonsequential helices due to insertion of the 4-helix bundle into the loop at the C terminus of helix α3. The linker connecting the bundles forms a two-stranded anti-parallel β-sheet likely limiting the relative movement of the two bundles. Because the 5-helix bundle contains the N and C termini of this module, we propose that it is linked by short loops to adjacent bundles, whereas the 4-helix bundle protrudes from the rod. This suggests the 4-helix bundle has a unique role, and its pI (7.8) is higher than other rod domains. Both helical bundles contain vinculin-binding sites but that in the isolated 5-helix bundle is cryptic, whereas that in the isolated 4-helix bundle is constitutively active. In contrast, both bundles are required for actin binding. Finally, we show that the MESDc1 protein, which is predicted to have a similar fold, is a novel actin-binding protein.  相似文献   

18.
To understand the role of aromatic-aromatic interactions in imparting specificity to the folding process, the geometries of four aromatic residues with different sequence spacing, located in alpha-helices or five residues from helical ends, interacting with each other have been elucidated. The geometry is found to depend on the sequence difference. Specific interactions (C-H...pi and N-H...pi) which result from this geometry may cause a given pair of residues (such as Phe-His) with a particular sequence difference to occur more than expected. The most conspicuous residue in an aromatic pair in the context of helix stability is His, which is found at the last (C1) position or the two positions (Ncap and Ccap) immediately flanking the helix. An alpha-helix and a contiguous 3(10)-helix or two helices separated by a non-helical residue can have interacting aromatic pairs, the geometry of interaction and the relative orientation between the helices being rather fixed. Short helices can also have interacting residues from either side.  相似文献   

19.
The shortest helices (three-length 3(10) and four-length alpha), most abundant among helices of different lengths, have been analyzed from a database of protein structures. A characteristic feature of three-length 3(10)-helices is the shifted backbone conformation for the C-terminal residue (phi,psi angles: -95 degrees,0 degrees ), compared to the rest of the helix (-62 degrees,-24 degrees ). The deviation can be attributed to the release of electrostatic repulsion between the carbonyl oxygen atoms at the two C-terminal residues and further stabilization (due to a more linear geometry) of an intrahelical hydrogen bond. A consequence of this non-canonical C-terminal backbone conformation can be a potential origin of helix kinks when a 3(10)-helix is sequence-contiguous at the alpha-helix N-terminal. An analysis of hydrogen bonding, as well as hydrophobic interactions in the shortest helices shows that capping interactions, some of them not observed for longer helices, dominate at the N termini. Further, consideration of the distribution of amino acid residues indicates that the shortest helices resemble the N-terminal end of alpha-helices rather than the C terminus, implying that the folding of helices may be initiated at the N-terminal end, which does not get propagated in the case of the shortest helices. Finally, pairwise comparison of beta-turns and the shortest helices, based on correlation matrices of site-specific amino acid composition, and the relative abundance of these short secondary structural elements, leads to a helix nucleation scheme that considers the formation of an isolated beta-turn (and not an alpha-turn) as the helix nucleation step, with shortest 3(10)-helices as intermediates between the shortest alpha-helix and the beta-turn. Our results ascribe an important role played by shortest 3(10)-helices in proteins with important structural and folding implications.  相似文献   

20.
The replication of the genome requires the removal of RNA primers from the Okazaki fragments and their replacement by DNA. In prokaryotes, this process is completed by DNA polymerase I by means of strand displacement DNA synthesis and 5 '-nuclease activity. Here, we demonstrate that the strand displacement DNA synthesis is facilitated by the collective participation of Ser(769), Phe(771), and Arg(841) present in the fingers subdomain of DNA polymerase I. The steady and presteady state kinetic analysis of the properties of appropriate mutant enzymes suggest that: (a) Ser(769) and Phe(771) together are involved in the strand separation via the formation of a flap structure, and (b) Arg(841) interacts with the template strand to achieve the optimal strand separation and DNA synthesis. The amino acid residues Ser(769) and Phe(771) are constituents of the O1-helix, which together with O and O2 helices form a 3-helix bundle structure. We note that this 3-helix bundle motif also exists in prokaryotic RNA polymerase. Thus in both DNA and RNA polymerases, this motif may have been adopted to achieve the strand separation function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号