首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ATP stimulates Cl(-) secretion and bile formation by activation of purinergic receptors in the apical membrane of cholangiocytes. The purpose of these studies was to determine the cellular origin of biliary ATP and to assess the regulatory pathways involved in its release. In Mz-Cha-1 human cholangiocarcinoma cells, increases in cell volume were followed by increases in phophoinositide (PI) 3-kinase activity, ATP release, and membrane Cl(-) permeability. PI 3-kinase signaling appears to play a regulatory role because ATP release was inhibited by wortmannin or LY294002 and because volume-sensitive current activation was inhibited by intracellular dialysis with antibodies to the 110 kDa-subunit of PI 3-kinase. Similarly, in intact normal rat cholangiocyte monolayers, increases in cell volume stimulated luminal Cl(-) secretion through a wortmannin-sensitive pathway. To assess the role of PI 3-kinase more directly, cells were dialyzed with the synthetic lipid products of PI 3-kinase. Intracellular delivery of phosphatidylinositol 3, 4-bisphosphate, and phosphatidylinositol 3,4,5-trisphosphate activated Cl(-) currents analogous to those observed following cell swelling. Taken together, these findings indicate that volume-sensitive activation of PI 3-kinase and the generation of lipid messengers modulate cholangiocyte ATP release, Cl(-) secretion, and, hence, bile formation.  相似文献   

2.
Formation of bile requires the coordinated function of two epithelial cell types: hepatocytes, that are responsible for secretion of the major osmolytes and biliary constituents and cholangiocytes that regulate the fluidity and alkalinity of bile through secretion of osmolytes such as Cl- and HCO3- Studies in isolated cholangiocyte preparations have elucidated the basic transport mechanisms involved in constitutive and stimulated secretory activities in the biliary epithelium. Basolateral Na+/H+ exchanger and Na+:HCO3- symporter mediate HCO3- uptake, while an apical cAMP-activated Cl-/HCO3- exchanger secretes bicarbonate into the lumen. Cholangiocytes also possess a cAMP-stimulated Cl- conductance (CFTR) and a Ca-activated Cl- channel, both likely located at the apical membrane. Cholangiocyte secretory functions are regulated by a complex network of hormones mainly acting via the cAMP system. In addition, recent data indicate that part of the regulation of ductular secretion may take place at the apical membrane of the cholangiocyte through factors present into the bile, such as ATP, bile acids and glutathione. Primary damage to the biliary epithelium is the cause of several chronic cholestatic disorders (cholangiopathies). From a pathophysiological point of view, common to all cholangiopathies is the coexistance of cholangiocyte death and proliferation and various degrees of portal inflammation and fibrosis. Cholestasis dominates the clinical picture and, pathophysiologically, may initiate or worsen the process. Alterations in biliary electrolyte transport could contribute to the pathogenesis of cholestasis in primary bile duct diseases. Cystic Fibrosis-related liver disease represents an example of biliary cirrhosis secondary to a derangement of cholangiocyte ion transport. Most primary cholangiopaties recognize an immune-mediated pathogenesis. Cytokines, chemokines, and proinflammatory mediators released in the portal spaces or produced by the cholangiocyte itself, likely activate fibrogenesis, stimulate apoptotic and proliferative responses, and alter the transport functions of the epithelium.  相似文献   

3.
Cholangiocytes, the epithelial cells lining intrahepatic bile ducts, contain primary cilia, which are mechano- and osmosensory organelles detecting changes in bile flow and osmolality and transducing them into intracellular signals. Here, we asked whether cholangiocyte cilia are chemosensory organelles by testing the expression of P2Y purinergic receptors and components of the cAMP signaling cascade in cilia and their involvement in nucleotide-induced cAMP signaling in the cells. We found that P2Y(12) purinergic receptor, adenylyl cyclases (i.e., AC4, AC6, and AC8), and protein kinase A (i.e., PKA RI-beta and PKA RII-alpha regulatory subunits), exchange protein directly activated by cAMP (EPAC) isoform 2, and A-kinase anchoring proteins (i.e., AKAP150) are expressed in cholangiocyte cilia. ADP, an endogenous agonist of P2Y(12) receptors, perfused through the lumen of isolated rat intrahepatic bile ducts or applied to the ciliated apical surface of normal rat cholangiocytes (NRCs) in culture induced a 1.9- and 1.5-fold decrease of forskolin-induced cAMP levels, respectively. In NRCs, the forskolin-induced cAMP increase was also lowered by 1.3-fold in response to ATP-gammaS, a nonhydrolyzed analog of ATP but was not affected by UTP. The ADP-induced changes in cAMP levels in cholangiocytes were abolished by chloral hydrate (a reagent that removes cilia) and by P2Y(12) siRNAs, suggesting that cilia and ciliary P2Y(12) are involved in nucleotide-induced cAMP signaling. In conclusion, cholangiocyte cilia are chemosensory organelles that detect biliary nucleotides through ciliary P2Y(12) receptors and transduce corresponding signals into a cAMP response.  相似文献   

4.
Na+/H+ exchanger (NHE) isoforms play important roles in intracellular pH regulation and in fluid absorption. The isoform NHE3 has been localized to apical surfaces of epithelia and in some tissues may facilitate the absorption of NaCl. To determine whether the apical isoform NHE3 is present in cholangiocytes and to examine whether it has a functional role in cholangiocyte fluid secretion and absorption, immunocytochemical studies were performed in rat liver with NHE3 antibodies and functional studies were obtained in isolated bile duct units from wild-type and NHE3-/- mice after stimulation with forskolin, using videomicroscopic techniques. Our results indicate that NHE3 protein is present on the apical membranes of rat cholangiocytes and on the canalicular membrane of hepatocytes. Western blots also detect NHE3 protein in rat cholangiocytes and isolated canalicular membranes. After stimulation with forskolin, duct units from NHE3-/- mice fail to absorb the secreted fluid from the cholangiocyte lumen compared with control animals. Similar findings were observed in isolated bile duct units from wild-type mice and rats in the presence of the Na+/H+ exchanger inhibitor 5-(N-ethyl-N-isopropyl)-amiloride. In contrast, we could not demonstrate absorption of fluid from the canalicular lumen of mouse or rat hepatocyte couplets after stimulation of secretion with forskolin. These findings indicate that NHE3 is located on the apical membrane of rat cholangiocytes and that this NHE isoform can function to absorb fluid from the lumens of isolated rat and mouse cholangiocyte preparations.  相似文献   

5.
Secretin not only increases ductular bile secretion in vivo in rats after bile duct ligation (BDL) [1], but also increases cAMP levels and stimulates exocytosis in isolated cholangiocytes [2]. Although we have previously reported that secretin receptor mRNA was upregulated in cholangiocytes after BDL [3], the cholangiocyte secretin receptor has not been functionally characterized or quantified after BDL. In this work, we used a novel, photolabile and biologically active analogue of secretin to quantify and characterize secretin receptors on cholangiocytes isolated from normal and BDL rats. The cholangiocyte secretin receptor bound radioligand with high affinity and in a rapid, reversible, and temperature-dependent manner. While receptors on cholangiocytes from normal and BDL rats were functionally and biochemically identical, receptor density on cholangiocytes was increased 5-fold following BDL. The combination of increased cell number with increased functional secretin receptors per cell is due to the fact that cholangiocyte hyperplasia represents a reactive response to a cholestatic condition and this effort on the part of the organism to maintain bile secretion, explains the increased hormone-responsive choleresis observed after BDL and may reflect an adaptive response of the organism to cholestasis.  相似文献   

6.
Human lactoferrin is an iron-binding glycoprotein present at high concentrations in breast milk and colostrum. It is produced by many exocrine glands and widely distributed in a variety of body fluids. This protein has antimicrobial, immunomodulatory, antioxidant, and anticancer properties. Two important hLf receptors have been identified: LDL receptor related protein (LRP1), a low specificity receptor, and intelectin-1 (ITLN1), a high specificity receptor. No data are present on the role of hLf on the biliary epithelium. Our aims have been to evaluate the expression of Lf and its receptors in human and murine cholangiocytes and its effect on proliferation. Immunohistochemistry and immunofluorescence (IF) were conducted on human healthy and primary biliary cholangitis (PBC) liver samples as well as on liver samples obtained from normal and bile duct ligated (BDL) mice to evaluate the expression of Lf, LRP1 and ITLN1. Cell proliferation in vitro studies were performed on human cholangiocyte cell lines via 3-(4,5-dimetiltiazol-2-il)-2,5-diphenyltetrazolium assay as well as IF to evaluate proliferating cell nuclear antigen (PCNA) expression. Our results show that mouse and human cholangiocytes express Lf, LRP1 and ITLN1, at higher extent in cholangiocytes from BDL and PBC samples. Furthermore, the in vitro addition of bovine Lf (bLf) has a proliferative effect on human cholangiocyte cell line. The results support a proliferative role of hLf on the biliary epithelium; this pro-proliferative effect of hLf and bLf on cholangiocytes could be particularly relevant in human cholangiopathies such as PBC, characterized by cholangiocyte death and ductopenia.  相似文献   

7.
Extracellular ATP regulates bile formation by binding to P2 receptors on cholangiocytes and stimulating transepithelial Cl(-) secretion. However, the specific signaling pathways linking receptor binding to Cl(-) channel activation are not known. Consequently, the aim of these studies in human Mz-Cha-1 biliary cells and normal rat cholangiocyte monolayers was to assess the intracellular pathways responsible for ATP-stimulated increases in intracellular Ca(2+) concentration ([Ca(2+)](i)) and membrane Cl(-) permeability. Exposure of cells to ATP resulted in a rapid increase in [Ca(2+)](i) and activation of membrane Cl(-) currents; both responses were abolished by prior depletion of intracellular Ca(2+). ATP-stimulated Cl(-) currents demonstrated mild outward rectification, reversal at E(Cl(-)), and a single-channel conductance of approximately 17 pS, where E is the equilibrium potential. The conductance response to ATP was inhibited by the Cl(-) channel inhibitors NPPB and DIDS but not the CFTR inhibitor CFTR(inh)-172. Both ATP-stimulated increases in [Ca(2+)](i) and Cl(-) channel activity were inhibited by the P2Y receptor antagonist suramin. The PLC inhibitor U73122 and the inositol 1,4,5-triphosphate (IP3) receptor inhibitor 2-APB both blocked the ATP-stimulated increase in [Ca(2+)](i) and membrane Cl(-) currents. Intracellular dialysis with purified IP3 activated Cl(-) currents with identical properties to those activated by ATP. Exposure of normal rat cholangiocyte monolayers to ATP increased short-circuit currents (I(sc)), reflecting transepithelial secretion. The I(sc) was unaffected by CFTR(inh)-172 but was significantly inhibited by U73122 or 2-APB. In summary, these findings indicate that the apical P2Y-IP3 receptor signaling complex is a dominant pathway mediating biliary epithelial Cl(-) transport and, therefore, may represent a potential target for increasing secretion in the treatment of cholestatic liver disease.  相似文献   

8.
Since ancient times, bile secretion has been considered vital for maintaining health. One of the main functions of bile secretion is gastric acid neutralization with biliary bicarbonate during a meal or Pavlovian response. Although the liver has many extrinsic and intrinsic nerve innervations, the functional role of these nerves in biliary physiology is poorly understood. To understand the role of neural regulation in bile secretion, our recent studies on the effect of bombesin, a neuropeptide, on bile secretion and its underlying mechanisms will be reviewed. Using isolated perfused rat livers (IPRL) from both normal and 2 week bile duct ligated rats, as well as hepatocyte couplets and isolated bile duct units (IBDU) from normal rat livers, bombesin was shown to stimulate biliary bicarbonate and fluid secretion from bile ducts. Detailed pH studies indicated that bombesin stimulated the activity of Cl-/HCO3- exchanger, which was counterbalanced by a secondary activation of electrogenic Na+/HCO3- symport. Quantitative videomicroscopic studies showed that bombesin-stimulated fluid secretion in IBDU was dependent on Cl- and HCO3- in the media, anion exchanger(s), Cl- and K+ channels, and carbonic anhydrase, but not on the microtubular system. Furthermore, this bombesin response is inhibited by somatostatin but not substance P. Finally, studies of secondary messengers in isolated cholangiocytes and IBDU indicated that bombesin had no effect on intracellular cAMP, cGMP, or Ca++ levels in cholangiocytes. These results provide evidence that neuropeptides such as bombesin can directly stimulate fluid and bicarbonate secretion from cholangiocytes by activating luminal Cl-/HCO3- exchange, but by different mechanisms from those established for secretin. These findings, in turn, suggest that neuropeptides may play an important regulatory role in biliary transport and secretion. Thus, this neuropeptidergic regulation of bile secretion may provide a plausible mechanism for the bicarbonate-rich choleresis seen with meals or Pavlovian response.  相似文献   

9.
Bile acids are cytoprotective in hepatocytes by activating phosphatidylinositol-3-kinase (PI3-K) and its downstream signal AKT. Our aim was to determine whether feeding taurocholate to CCl(4)-treated rats reduces cholangiocyte apoptosis and whether this cytoprotective effect is dependent on PI3-K. Cholangiocyte proliferation, secretion, and apoptosis were determined in cholangiocytes from bile duct ligation (BDL), CCl(4)-treated BDL rats, and CCl(4)-treated taurocholate-fed rats. In vitro, we tested whether CCl(4) induces apoptosis and whether loss of cholangiocyte proliferation and secretion is dependent on PI3-K. The CCl(4)-induced cholangiocyte apoptosis and loss of cholangiocyte proliferation and secretion were reduced in CCl(4)-treated rats fed taurocholate. CCl(4)-induced cholangiocyte apoptosis, loss of cholangiocytes secretion, and proliferation were prevented by preincubation with taurocholate. Taurocholate cytoprotective effects were ablated by wortmannin. Taurocholate prevented, in vitro, CCl(4)-induced decrease of phosphorylated AKT protein expression in cholangiocytes. The cytoprotective effects of taurocholate on CCl(4) effects on cholangiocyte proliferation and secretion were abolished by wortmannin. Taurocholate protects cholangiocytes from CCl(4)-induced apoptosis by a PI3-K-dependent mechanism. Bile acids are important in the prevention of drug-induced ductopenia in cholangiopathies.  相似文献   

10.
Extracellular nucleotides may be important regulators of bile ductular secretion, because cholangiocytes express P2Y ATP receptors and nucleotides are found in bile. However, the expression, distribution, and function of specific P2Y receptor subtypes in cholangiocytes are unknown. Thus our aim was to determine the subtypes, distribution, and role in secretion of P2Y receptors expressed by cholangiocytes. The molecular subtypes of P2Y receptors were determined by RT-PCR. Functional studies measuring cytosolic Ca2+ (Ca) signals and bile ductular pH were performed in isolated, microperfused intrahepatic bile duct units (IBDUs). PCR products corresponding to P2Y1, P2Y2, P2Y4, P2Y6, and P2X4 receptor subtypes were identified. Luminal perfusion of ATP into IBDUs induced increases in Ca that were inhibited by apyrase and suramin. Luminal ATP, ADP, 2-methylthioadenosine 5'-triphosphate, UTP, and UDP each increased Ca. Basolateral addition of adenosine 5'-O-(3-thiotriphosphate) (ATP-gamma-S), but not ATP, to the perifusing bath increased Ca. IBDU perfusion with ATP-gamma-S induced net bile ductular alkalization. Cholangiocytes express multiple P2Y receptor subtypes that are expressed at the apical plasma membrane domain. P2Y receptors are also expressed on the basolateral domain, but their activation is attenuated by nucleotide hydrolysis. Activation of ductular P2Y receptors induces net ductular alkalization, suggesting that nucleotide signaling may be an important regulator of bile secretion by the liver.  相似文献   

11.
We examined bovine aortic endothelial cells (BAECs) for the functional expression of P2X receptors, the ATP-gated cation channels. We identified the P2X subtypes present in BAECs using RT-PCR. mRNA was present for only three of seven family members: P2X4, P2X5, and P2X7. We then characterized agonist-activated currents in whole cell and outside-out patch recordings using 2-methyl-thio-ATP (MeSATP) as a P2X4 and P2X5 receptor agonist and 2',3'-O-(4-benzoylbenzoyl)ATP (BzATP) as a P2X7 receptor agonist. MeSATP (10-20 microM) produced current with characteristics of P2X4 receptors. The current was an inwardly rectifying current, reversed near 0 mV, slowly desensitized, was not blocked by suramin (300 microM) or reactive blue (60 microM), and had a single channel conductance of 36 pS. BzATP (10-100 microM), on the other hand, activated a 9-pS channel with sustained activity in the continued presence of the agonist. BzATP-activated current was blocked by reactive blue (60 microM) and by suramin (approximately 50% block at 300 microM). We confirmed, by immunocytochemistry, the presence of P2X4 and P2X7 protein. The agonists failed, however, to induce significant uptake of the large molecule YO-PRO, indicating the lack of pore development that has been demonstrated for P2X7 and P2X4 in response to agonist in some cell types.  相似文献   

12.
13.
Paracrine signaling between cholangiocytes and stromal cells regulates biliary remodeling. Cholangiocytes have neuroepithelial characteristics and serotonin receptor agonists inhibit their growth, but whether they are capable of serotonin biosynthesis is unknown. We hypothesized that cholangiocytes synthesize serotonin and that cross talk between liver myofibroblasts (MF) and cholangiocytes regulates this process to influence biliary remodeling. Transwell cultures of cholangiocytes ± MF, and tryptophan hydroxylase-2 knockin (TPH2KI) mice with an inactivating mutation of the neuronal tryptophan hydroxylase (TPH) isoform, TPH2, were evaluated. Results in the cell culture models confirm that cholangiocytes have serotonin receptors and demonstrate for the first time that these cells express TPH2 and produce serotonin, which autoinhibits their growth but stimulates MF production of TGF-β(1). Increased TGF-β(1), in turn, counteracts autocrine inhibition of cholangiocyte growth by repressing cholangiocyte TPH2 expression. Studies of TPH2KI mice confirm that TPH2-mediated production of serotonin plays an important role in remodeling damaged bile ducts because mice with decreased TPH2 function have reduced biliary serotonin levels and exhibit excessive cholangiocyte proliferation, accumulation of aberrant ductules and liver progenitors, and increased liver fibrosis after bile duct ligation. This new evidence that cholangiocytes express the so-called neuronal isoform of TPH, synthesize serotonin de novo, and deploy serotonin as an autocrine/paracrine signal to regulate regeneration of the biliary tree complements earlier work that revealed that passive release of serotonin from platelets stimulates hepatocyte proliferation. Given the prevalent use of serotonin-modulating drugs, these findings have potentially important implications for recovery from various types of liver damage.  相似文献   

14.
During cholestatic liver diseases, cholangiocytes express neuroendocrine phenotypes and respond to a number of hormones and neuropeptides by paracrine and autocrine mechanisms. We examined whether the neuroendocrine hormone progesterone is produced by and targeted to cholangiocytes, thereby regulating biliary proliferation during cholestasis. Nuclear (PR-A and PR-B) and membrane (PRGMC1, PRGMC2, and mPRalpha) progesterone receptor expression was evaluated in liver sections and cholangiocytes from normal and bile duct ligation (BDL) rats, and NRC cells (normal rat cholangiocyte line). In vivo, normal rats were chronically treated with progesterone for 1 wk, or immediately after BDL, rats were treated with a neutralizing progesterone antibody for 1 wk. Cholangiocyte growth was measured by evaluating the number of bile ducts in liver sections. The expression of the progesterone synthesis pathway was evaluated in liver sections, cholangiocytes and NRC. Progesterone secretion was evaluated in supernatants from normal and BDL cholangiocytes and NRC. In vitro, NRC were stimulated with progesterone and cholangiocyte supernatants in the presence or absence of antiprogesterone antibody. Aminoglutethimide was used to block progesterone synthesis. Cholangiocytes and NRC express the PR-B nuclear receptor and PRGMC1, PRGMC2, and mPRalpha. In vivo, progesterone increased the number of bile ducts of normal rats, whereas antiprogesterone antibody inhibited cholangiocyte growth stimulated by BDL. Normal and BDL cholangiocytes expressed the biosynthetic pathway for and secrete progesterone. In vitro, 1) progesterone increased NRC proliferation; 2) cholangiocyte supernatants increased NRC proliferation, which was partially inhibited by preincubation with antiprogesterone; and 3) inhibition of progesterone steroidogenesis prevented NRC proliferation. In conclusion, progesterone may be an important autocrine/paracrine regulator of cholangiocyte proliferation.  相似文献   

15.
We sought to develop a cholangiocyte cell culture system that has preservation of receptors, transporters, and channels involved in secretin-induced secretion. Isolated bile duct fragments, obtained by enzyme perfusion of normal rat liver, were seeded on collagen and maintained in culture up to 18 wk. Cholangiocyte purity was assessed by staining for gamma-glutamyl transpeptidase (gamma-GT) and cytokeratin-19 (CK-19). We determined gene expression for secretin receptor (SR), cystic fibrosis transmembrane conductance regulator, Cl(-)/HCO(3)(-) exchanger, secretin-stimulated cAMP synthesis, Cl(-)/HCO(3) exchanger activity, secretin-stimulated Cl(-) efflux, and apical membrane-directed secretion in polarized cells grown on tissue culture inserts. Cultured cholangiocytes were all gamma-GT and CK-19 positive. The cells expressed SR and Cl(-)/HCO(3)(-) exchanger, and secretin-stimulated cAMP synthesis, Cl(-)/HCO(3)(-) exchanger activity, and Cl(-) efflux were similar to freshly isolated cholangiocytes. Forskolin (10(-4) M) induced fluid accumulation in the apical chamber of tissue culture inserts. In conclusion, we have developed a novel cholangiocyte line that has persistent HCO(3)(-), Cl(-), and fluid transport functions. This cell system should be useful to investigators who study cholangiocyte secretion.  相似文献   

16.
Cholangiopathies, such as primary biliary cirrhosis and primary sclerosis cholangitis, are characterized at the end stage by ductopenia due to increased cholangiocyte apoptosis and decreased cholangiocyte proliferation. Although cholangiocyte proliferation is associated with an increased number of intra-hepatic bile ducts and secretin-stimulated ductal secretion, ductopenia is coupled with decreased ductal mass and secretin-induced ductal secretory activity. We have shown that a single injection of actinomycin D + tumor necrosis factor-alpha (TNF-alpha ) to bile duct-ligated (BDL) rats induces cholangiocyte injury, which is characterized by loss of cholangiocyte proliferation, and secretory activity and by an increase in cholangiocyte apoptosis. We also have shown that taurocholic acid both in vivo and in vitro stimulates cholangiocyte proliferation. We hypothesize that taurocholic acid feeding protects cholangiocytes against TNF-alpha -induced apoptosis through a phosphatidylinositol-3-kinase (PI3K)-dependent pathway. Immediately after BDL, rats were fed taurocholic acid or control diet in the absence/presence of daily injections of wortmannin for 1 week. Seven days later, control-fed or taurocholic acid-fed rats were treated with a single intraperitoneal injection of actinomycin D + TNF-alpha . Twenty-four hours later we evaluated: (i) cholangiocyte apoptosis and proliferation in liver sections and (ii) basal and secretin-stimulated bile and bicarbonate secretion in bile fistula rats. Taurocholic acid feeding prevented TNF-alpha -induced increases in cholangiocyte apoptosis and decreases in growth and secretin-stimulated bile and bicarbonate secretion, changes that were blocked by PI3K inhibition. The PI3K survival pathway is important in bile acid protection against immune-mediated cholangiocyte injury in cholestatic liver diseases.  相似文献   

17.
Cholangiocytes, the epithelial cells lining intrahepatic bile ducts, express multiple toll-like receptors (TLRs) and, thus, have the capacity to recognize and respond to microbial pathogens. In previous work, we demonstrated that TLR4, which is activated by gram-negative lipopolysaccharide (LPS), is upregulated in cholangiocytes in response to infection with Cryptosporidium parvum in vitro and contributes to nuclear factor-kappaB (NF-kB) activation. Here, using an in vivo model of biliary cryptosporidiosis, we addressed the functional role of TLR4 in C. parvum infection dynamics and hepatobiliary pathophysiology. We observed that C57BL mice clear the infection by 3 wk post-infection (PI). In contrast, parasites were detected in bile and stool in TLR4-deficient mice at 4 wk PI. The liver enzymes alanine transaminase (ALT) and aspartate transaminase (AST), and the proinflammatory cytokines tumor necrosis factor (TNF)-α, interferon (IFN)-γ, and interleukin (IL)-6 peaked at 1 to 2 wk PI and normalized by 4 wk in infected C57BL mice. C57BL mice also demonstrated increased cholangiocyte proliferation (PCNA staining) at 1 wk PI that was resolved by 2 wk PI. In contrast, TLR4-deficient mice showed persistently elevated serum ALT and AST, elevated hepatic IL-6 levels, and histological evidence of hepatocyte necrosis, increased inflammatory cell infiltration, and cholangiocyte proliferation through 4 wk PI. These data suggest that a TLR4-mediated response is required for efficient eradication of biliary C. parvum infection in vivo, and lack of this pattern-recognition receptor contributes to an altered inflammatory response and an increase in hepatobiliary pathology.  相似文献   

18.
Cholangiocytes, epithelial cells that line the biliary epithelium, are the primary target cells for cholangiopathies including primary sclerosing cholangitis and primary biliary cholangitis. Quiescent cholangiocytes respond to biliary damage and acquire an activated neuroendocrine phenotype to maintain the homeostasis of the liver. The typical response of cholangiocytes is proliferation leading to bile duct hyperplasia, which is a characteristic of cholestatic liver diseases. Current studies have identified various signaling pathways that are associated with cholangiocyte proliferation/loss and liver fibrosis in cholangiopathies using human samples and rodent models. Although recent studies have demonstrated that extracellular vesicles and microRNAs could be mediators that regulate these messenger/receptor axes, further studies are required to confirm their roles. This review summarizes current studies of biliary response and cholangiocyte proliferation during cholestatic liver injury with particular emphasis on the secretin/secretin receptor axis. This article is part of a Special Issue entitled: Cholangiocytes in Health and Diseaseedited by Jesus Banales, Marco Marzioni, Nicholas LaRusso and Peter Jansen.  相似文献   

19.
Cholangiocytes, the epithelial cells lining bile ducts, provide the first line of defense against lumenal microbes in the biliary system. Recent advances in biliary immunity indicate that cholangiocytes express a variety of pathogen-recognition receptors and can activate a set of intracellular signaling cascades to initiate a profound antimicrobial defense, including release of proinflammatory cytokines and chemokines, production of antimicrobial peptides and maintenance of biliary epithelial integrity. Cholangiocytes also interact with other cell types in the liver (for example, lymphocytes and Kupffer cells) through expression and release of adhesion molecules and immune mediators. Subsequently, through an intricate feedback mechanism involving both epithelial and other liver cells, a set of intracellular signaling pathways are activated to regulate the functional state of cholangiocyte responses during microbial infection. Thus, cholangiocytes are actively involved in mucosal immunity of the biliary system and represent a fine-tuned, integral component of liver immunity.  相似文献   

20.
Increased cholangiocyte growth is critical for the maintenance of biliary mass during liver injury by bile duct ligation (BDL). Circulating levels of testosterone decline following castration and during cholestasis. Cholangiocytes secrete sex hormones sustaining cholangiocyte growth by autocrine mechanisms. We tested the hypothesis that testosterone is an autocrine trophic factor stimulating biliary growth. The expression of androgen receptor (AR) was determined in liver sections, male cholangiocytes, and cholangiocyte cultures [normal rat intrahepatic cholangiocyte cultures (NRICC)]. Normal or BDL (immediately after surgery) rats were treated with testosterone or antitestosterone antibody or underwent surgical castration (followed by administration of testosterone) for 1 wk. We evaluated testosterone serum levels; intrahepatic bile duct mass (IBDM) in liver sections of female and male rats following the administration of testosterone; and secretin-stimulated cAMP levels and bile secretion. We evaluated the expression of 17β-hydroxysteroid dehydrogenase 3 (17β-HSD3, the enzyme regulating testosterone synthesis) in cholangiocytes. We evaluated the effect of testosterone on the proliferation of NRICC in the absence/presence of flutamide (AR antagonist) and antitestosterone antibody and the expression of 17β-HSD3. Proliferation of NRICC was evaluated following stable knock down of 17β-HSD3. We found that cholangiocytes and NRICC expressed AR. Testosterone serum levels decreased in castrated rats (prevented by the administration of testosterone) and rats receiving antitestosterone antibody. Castration decreased IBDM and secretin-stimulated cAMP levels and ductal secretion of BDL rats. Testosterone increased 17β-HSD3 expression and proliferation in NRICC that was blocked by flutamide and antitestosterone antibody. Knock down of 17β-HSD3 blocks the proliferation of NRICC. Drug targeting of 17β-HSD3 may be important for managing cholangiopathies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号