首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Protein hydrolysate was prepared from visceral waste proteins of Catla (Catla catla), an Indian freshwater major carp. Hydrolysis conditions (viz., time, temperature, pH and enzyme to substrate level) for preparing protein hydrolysates from the fish visceral waste proteins were optimized by response surface methodology (RSM) using a factorial design. Model equation was proposed with regard to the effect of time, temperature, pH and enzyme to substrate level. An enzyme to substrate level of 1.5% (v/w), pH 8.5, temperature of 50 degrees C and a hydrolysis time of 135 min were found to be the optimum conditions to obtain a higher degree of hydrolysis close to 50% using alcalase. The amino acid composition of the protein hydrolysate prepared using the optimized conditions revealed that the protein hydrolysate was similar to FAO/WHO reference protein. The chemical scores computed indicated methionine to be the most limiting amino acid. The protein hydrolysate can well be used to meet the amino acid requirements of juvenile common carp and hence has the potential for application as an ingredient in balanced fish diets.  相似文献   

2.
Protein hydrolysate was prepared from pre-treated sheep visceral mass (including stomach, large and small intestines) by enzymatic treatment at 43+/-1 degrees C (at the in situ pH 7.1+/-0.2 of the visceral mass) using fungal protease. The enzyme readily solubilized the proteins of the visceral mass as indicated by the degree of hydrolysis (34%) and nitrogen recovery (>64%). Hydrolysis with an enzyme level of 1% (w/w of total solids) at 43+/-1 degrees C with a pH around 7.0 for 45 min was found to be the optimum condition. The yield of protein hydrolysate was about 6% (w/w). The amino acid composition of the protein hydrolysate that was very hygroscopic, was comparable to that of casein.  相似文献   

3.
Some studies have carried out in order to retrieve proteins from the by-product of animal-processing industries. Earthworms are rich in protein and usually are used in animal feed. Thus, this study aimed to optimize the hydrolysis process of Eisenia andrei earthworms by employing Alcalase enzyme. Using the response surface methodology, we evaluated the following conditions: temperature, hydrolysis time, stirring speed, and enzyme/substrate ratio. The optimal conditions for the experimental design were determined through the analysis of the foaming and emulsifying properties, in vitro starch digestibility, and antioxidant activity. The results demonstrate that the highest degree of hydrolysis (i.e., 92%) was obtained under the following conditions: pH, 9.5; temperature, 25?°C; hydrolysis time, 2.25?h; stirring speed, 200?rpm; and enzyme/substrate ratio, 1.77%, using Alcalase enzyme. Evaluation of the amino acid composition under these conditions revealed higher concentrations of aspartic acid, glutamic acid, and leucine. The in vitro protein digestibility of the hydrolysate was approximately 73%. There were no significant improvements in either foam stability or emulsification after enzymatic hydrolysis. Additional studies on the antioxidant activity are required. This bioproduct could potentially serve as a promising supplementary food product.  相似文献   

4.
Rapeseed proteins were processed by an enzyme complex isolated from king crab hepatopancreas in order to obtain a hydrolysate for use as fish fry feed. The amino acid composition of the obtained protein preparation was close to the amino acid composition of fishmeal traditionally used in the production of fish feed. SDS-PAGE, HPLC, and mass spectrometric analysis of the products of enzymatic hydrolysis of rapeseed proteins showed that the proteins were hydrolyzed to a high degree. The composition of the hydrolysates depended on the hydrolysis time and included free amino acids (27% of the total weight of the protein mix after 3 h of hydrolysis and 56% after 21 h of hydrolysis), short peptides (2 to 20 amino acid residues), and small amounts of protein fragments with a molecular weight of approximately 14 kDa, as shown by by SDS-PAG electrophoresis.  相似文献   

5.
A comparative study of soybean and rapeseed protein hydrolysis by protosubtilin, an original Russian enzyme preparation widely used in animal feed production, has been performed. SDS-PAG electrophoresis, HPLC, and mass spectrometry have been employed to analyze the obtained products. The soybean protein isolate used for hydrolysate production was obtained from a commercial supplier, and rapeseed proteins were prepared from the meal by alkali extraction. Low molecular weight impurities were removed by ultrafiltration. The degree of protein hydrolysis has been shown to depend on the substrate-to-enzyme preparation ratio, hydrolysis time, and protein concentration. Rapeseed protein hydrolysis by protosubtilin at an enzyme/protein ratio of 1: 20 and hydrolysis time of 20 h resulted in complete cleavage of the proteins present in the raw material and the accumulation of oligopeptides (molecular weight less than 14 kDa) and free amino acids, which accounted for 53 and 8% of the initial protein weight, respectively. In contrast to rapeseed proteins, soybean proteins showed considerable gelling at the initial stages of hydrolysis, and the formation of insoluble hydrolysis-resistant fragments was observed. The soluble part of the hydrolysate contained short oligopeptides and free amino acids, which accounted for 13% of the initial protein weight only.  相似文献   

6.
Amino acid production from a sunflower wholemeal protein concentrate   总被引:1,自引:0,他引:1  
A study was undertaken to investigate the influence of protein concentration and the addition of different doses of endopeptidase (Alcalase) and exopeptidase (Flavourzyme) on the sequential enzymatic hydrolysis of a protein concentrate obtained from defatted sunflower wholemeal. The results show that the greatest degree of hydrolysis (37.8%) is achieved by hydrolyzing an aqueous substrate with a 5% protein concentrate, and using a 0.02 g Alcalase/g of protein concentrate of the substrate. The aminograms performed reveal that the free amino acid found in the highest proportion in the hydrolysate was aspartic acid, which accounted for over 50% of the free amino acids present, regardless of the substrate concentration and the enzyme dosage used. Finally, the hydrolysate obtained from a substrate containing a 5% protein concentrate and a 0.02 g Alcalase/g of protein concentrate displayed characteristics that indicate its suitability for use as a vegetable-origin plant growth regulator.  相似文献   

7.
This paper presents stable carboxypeptidase A (CPA)-glyoxyl derivatives, to be used in the controlled hydrolysis of proteins. They were produced after immobilizing-stabilizing CPA on cross-linked 6% agarose beads, activated with low and high concentrations of aldehyde groups, and different immobilization times. The CPA-glyoxyl derivatives were compared to other agarose derivatives, prepared using glutaraldehyde as activation reactant. The most stabilized CPA-glyoxyl derivative was produced using 48 h of immobilization time and high activation grade of the support. This derivative was approximately 260-fold more stable than the soluble enzyme and presented approximately 42% of the activity of the soluble enzyme for the hydrolysis of long-chain peptides (e.g., cheese whey proteins previously hydrolyzed with immobilized trypsin and chymotrypsin) and of the small substrate N-benzoylglycyl-l-phenylalanine (hippuryl-l-Phe). These results were much better than those achieved using the conventional support, glutaraldehyde-agarose. Amino acid analysis of the products of the acid hydrolysis of CPA (both soluble and immobilized) showed that approximately four lysine residues were linked on the glyoxyl agarose beads, suggesting the existence of an intense multipoint covalent attachment between the enzyme and the support. The maximum temperature of hydrolysis was increased from 50 degrees C (soluble enzyme) to 70 degrees C (most stable CPA-glyoxyl derivative). The most stable CPA-glyoxyl derivative could be efficiently used in the hydrolysis of long-chain peptides at high temperature (e.g., 60 degrees C), being able to release 2-fold more aromatic amino acids (Tyr, Phe, and Trp) than the soluble enzyme, under the same operational conditions. This new CPA derivative greatly increased the feasibility of using this protease in the production of protein hydrolysates that must be free of aromatic amino acids.  相似文献   

8.

The enzymatic hydrolysis was performed by Alcalase to recover the fish protein hydrolysate from Caspian kutum by-product (CB). The degree of hydrolysis (DH) was applied for monitoring the hydrolysis reaction of CB. The response surface methodology was applied based on a D-optimal design to perform the optimization process for obtaining the high yield of CB protein hydrolysate. The effect of four independent variables including pH (7.5–8.5), temperature (45–55 °C), time (1–3 h), and enzyme concentration (0.5–1.5% w/w) on DH was studied. The results indicated that the predicted and actual values of the optimum condition had no significant difference. The optimum enzymatic hydrolysis conditions were achieved at pH 8.5, temperature of 55 °C, enzyme concentration of 1.5% w/w, and time of 3 h, which resulted in the maximum value of DH (19.08%). Antioxidant assays including DPPH scavenging and metal chelating activities showed that Caspian kutum protein hydrolysates had antioxidant properties.

  相似文献   

9.
The process of enzymatic hydrolysis of the mycelial waste from the manufacture of tetracycline with using Streptomyces aureofaciens was studied. For the enzymatic hydrolysis, neutral and alkaline proteinases were used. It was shown that alkaline proteinase (protosubtilin G10X) provided the most efficient hydrolysis. Optimal conditions for the hydrolysis were determined: a temperature of 42 degrees C, hydrolysis time of 4 to 6 hours and enzyme concentrations of 1.25 to 2.20 mg/ml at a mycecial waste concentration of 12.5 mg/ml. The time course of changes in amino acid and amine nitrogen levels during enzymatic hydrolysis was investigated. It was demonstrated that the hydrolysis efficiency depended on the mode of enzyme addition. The highest efficiency was observed with fractional feeding of the enzyme.  相似文献   

10.
To perform hydrolysis with the enzyme complex from the hepatopancreas of the Kamchatka crab, a protein mixture was isolated from soybean meal by extraction at alkaline pH values. Extractable low-molecular impurities were removed by ultrafiltration and precipitation of proteins with alcohol. The amino acid composition of the obtained protein extract turned out to be similar to the composition of the fish meal traditionally used in the production of fish feeds. Analysis of the products of fermentolysis by DDS-electrophoresis, HPLC, and mass spectrometry showed a high degree of hydrolysis of soybean proteins. Depending on the time of fermentolysis, the hydrolysates contained up to 60% (18 h of hydrolysis) of free amino acids (the fraction of the weight of the hydrolyzed protein mixture) and short peptides (2–20 amino acid residues).  相似文献   

11.
为了以细菌胞外蛋白酶酶解低值蛋白资源制备抗氧化活性肽以及挖掘新型蛋白酶,采用液体发酵培养的方法对假交替单胞菌Pseudoalteromonas sp.SHK1-2进行发酵产酶,获得胞外蛋白酶粗酶液用于酶解热水法提取的鲮鱼胶原蛋白,通过超滤、sephadex LH-20分子筛层析获得具有DPPH自由基清除能力(35.6%±7%)、氧自由基清除能力(Oxygen radical absorbance capacity,ORAC)及DNA氧化损伤抑制活性的小分子肽,液相色谱质谱联用鉴定该活性肽分子量为776.2 Da,预测氨基酸序列为Thr-Ala-Gly-His-Pro-Gly-Thr-His。ORAC检测验证了人工合成的多肽同样具有抗氧化活性。研究表明细菌胞外蛋白酶在低值资源高值化中具有一定的应用前景,对于新型蛋白酶及其应用的挖掘具有一定的参考意义。  相似文献   

12.
Phosphotyrosine in proteins. Stability and quantification   总被引:5,自引:0,他引:5  
The acid and base stability of the phosphoryl bond of phosphotyrosine (Tyr-P) was studied using conditions for rapid and complete hydrolysis of protein peptide bonds. A method was developed for the quantification of Tyr-P in proteins using rapid base hydrolysis and an amino acid analyzer equipped with a fluorometric detection system. The recovery of [32P]Tyr-P from base digests of radiolabeled samples of phosphotyrosyl glutamine synthetase, transforming protein of Rous sarcoma virus, casein, and rabbit anti-sarcoma IgG was 80 +/- 2%. Phosphotyrosine could not be detected in several commercial histone samples, but Tyr-P was detected in phosvitin samples. The putative Tyr-P from the phosvitin hydrolysate was separated from normal amino acids by Dowex 50-H+ chromatography. Treatment of the partially purified Tyr-P with bacterial alkaline phosphatase produced tyrosine in near equivalent quantities to the measured level of Tyr-P. These results show that basic hydrolysis of phosphotyrosyl proteins yields Tyr-P in constant and good yields which can be quantified in amounts greater than or equal to 100 pmol or radiochemically detected in smaller amounts with an amino acid analyzer.  相似文献   

13.
Methods for obtaining protein hydrolysates with certain given properties are considered. It is shown that, besides food proteins, various yeast proteins can be used. Advantages and disadvantages of different types of hydrolysis, hydrolysis conditions, methods of hydrolysate purification and prevention of labile amino acid destruction are described.  相似文献   

14.
Whey is a protein complex derived from milk, exhibit highest protein quality rating among other proteins, being touted as a functional food with number of health benefits. In the present investigation, whey proteins hydrolysates produced using trypsin enzyme to augment antioxidant activity and to assess angiotensin converting enzyme (ACE) inhibition activity. Hydrolysis parameters were standardized applying response surface methodology. The response antioxidant activity in terms of Trolox equivalent antioxidant capacity (TEAC) values was determined by radical scavenging assay method. Optimum conditions for maximum antioxidant activity were standardized at 88 °C of preheating, 7.3 pH, 0.05 enzymes to substrate ratio and hydrolysis was carried up to 8 h at 36.5 °C. Resulting peptide fractions obtained at 11.8 % of degree of hydrolysis displayed antioxidant capacity with TEAC values of 1.37 ± 0.12. The designed model found to be significant with R2 value of 0.9972 for antioxidant activity and lack of fit test-as non significant, indicating that the optimized conditions were best suited. The hydrolysate further investigated for antihypertensive activity. The outcome indicate that to affect decrease in ACE inhibition activity 4,166.72 μg of native whey protein is required when compared to 229.96 μg of hydrolysates. These results indicate hydrolysate produced under these conditions could be an effective nutraceutical.  相似文献   

15.

Background

As the protein-laden by-product, red blood cells (RBCs) from poultry blood is a potential source of protein used as food and feed ingredient. However, RBC was currently underutilized. Therefore, it is an urgent need to develop feasible and cost-effective methods for converting poultry waste into nutritional and functional products.

Results

To take full advantage of this poultry waste, peptide hydrolysate was produced by deep controllable bioconversion of RBC, by means of synergistic combination of neutrase and flavourzyme. In this work, the functional properties and antioxidant activity of peptide hydrolysate were also characterized. The degree of hydrolysis (DH) was optimized using response surface methodology, and optimal hydrolysis conditions were found to be: temperature 51 °C, substrate concentration 14% (w/v), initial pH 7.0, and time 7.5 h. The red blood cell hydrolysate (RBCH) obtained not only possessed plentiful small peptides (<?3 kDa, 68.14%), but also was abundant in essential amino acids, accounting for over 50% of total amino acids. In addition to its excellent solubility (>?80%), emulsifying and foaming properties, RBCH also exhibited notable antioxidant activities, such as DPPH (2,2-diphenyl??1-picrylhydrazyl) radical-scavenging activity (IC50, 4.16 mg/mL), reducing power, metal chelating ability and inhibiting lipid peroxidation.

Conclusions

RBCH enriched in small peptides has the potential to be a new food additive with outstanding functional and antioxidant properties, and a process was established for converting poultry waste into peptide hydrolysate using neutrase and flavourzyme.
  相似文献   

16.
Green tea contains active ingredients which are beneficial for health. While numerous studies have been conducted on the components extracted from green tea, few studies have investigated the active ingredients in tea residue. In this study, proteins were extracted from green tea residue via an optimised alkaline extraction combined with enzymatic hydrolysis, of which, an acidic protease was selected to prepare an enzymatic hydrolysate because of its high angiotensin converting enzyme (ACE) inhibitory activity. The composition characteristics of extracted green tea proteolysis products were elucidated, including amino acid composition, molecular weight distribution and possible amino acid sequences. In addition, the protein hydrolysate had anti-digestive properties, maintained its activity of inhibiting ACE enzyme at different temperatures, pH and metal ions, and exhibited antihypertensive activity in animals. In conclusion, the optimised alkaline extraction and enzymatic hydrolysis conditions of a ACE inhibitory peptide from green tea residue is an optimal extraction method to maintain its antihypertensive activity, providing the basis for the clinical application of green tea for blood pressure reduction.  相似文献   

17.
The effect of enzymatic hydrolysis by Savinase on the interfacial properties and antihypertensive activity of shrimp waste proteins was evaluated. The physicochemical characterization, interfacial tension, and surface characteristics of shrimp waste protein hydrolysates (SWPH) using different enzyme/substrate (E/S) (SWPH5 (SWPH using E/S = 5), SWPH15 (SWPH using E/S = 15), and SWPH40 (SWPH using E/S = 40)) were also studied. SWPH5, SWPH15, and SWPH40 had an isoelectric pH around 2.07, 2.17, and 2.54 respectively. SWPH5 exhibited the lowest interfacial tension (68.96 mN/m) followed by SWPH15 (69.36 mN/m) and SWPH40 (70.29 mN/m). The in vitro ACE inhibitory activity of shrimp waste protein hydrolysates showed that the most active hydrolysate was obtained using an enzyme/substrate of 15 U/mg (SWPH15). SWPH15 had a lower IC50 value (2.17 mg/mL) than that of SWPH5 and SWPH40 (3.65 and 5.7 mg/mL, respectively). This hydrolysate was then purified and characterized. Fraction F1 separated by Sephadex G25 column which presents the best ACE inhibition activity was then separated by reversed‐phase high performance liquid chromatography. Four ACE inhibitory peptides were identified and their molecular masses and amino acid sequences were determined using ESI–MS and ESI–MS/MS, respectively. The structures of the most potent peptides were SSSKAKKMP, HGEGGRSTHE, WLGHGGRPDHE, and WRMDIDGDIMISEQEAHQR. The structural modeling of anti‐ACE peptides from shrimp waste through docking simulations results showed that these peptides bound to ACE with high affinity.  相似文献   

18.
Optimized hydrolysis of lignocellulosic waste biomass is essential to achieve the liberation of sugars to be used in fermentation process. Ionic liquids (ILs), a new class of solvents, have been tested in the pretreatment of cellulosic materials to improve the subsequent enzymatic hydrolysis of the biomass. Optimized application of ILs on biomass is important to advance the use of this technology. In this research, we investigated the effects of using 1‐butyl‐3‐methylimidazolium acetate ([bmim][Ac]) on the decomposition of soybean hull, an abundant cellulosic industrial waste. Reaction aspects of temperature, incubation time, IL concentration, and solid load were optimized before carrying out the enzymatic hydrolysis of this residue to liberate fermentable glucose. Optimal conditions were found to be 75°C, 165 min incubation time, 57% (mass fraction) of [bmim][Ac], and 12.5% solid loading. Pretreated soybean hull lost its crystallinity, which eased enzymatic hydrolysis, confirmed by Fourier Transform Infrared analysis. The enzymatic hydrolysis of the biomass using an enzyme complex from Penicillium echinulatum liberated 92% of glucose from the cellulose matrix. The hydrolysate was free of any toxic compounds, such as hydroxymethylfurfural and furfural. The obtained hydrolysate was tested for fermentation using Candida shehatae HM 52.2, which was able to convert glucose to ethanol at yields of 0.31. These results suggest the possible use of ILs for the pretreatment of some lignocellulosic waste materials, avoiding the formation of toxic compounds, to be used in second‐generation ethanol production and other fermentation processes. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 32:312–320, 2016  相似文献   

19.
牦牛骨蛋白的酶解条件研究   总被引:2,自引:0,他引:2  
以蛋白质水解度为评价指标,辅以固形物溶出率,比较了中性蛋白酶、菠萝蛋白酶和木瓜蛋白酶对牦牛骨蛋白的水解效果,研究了酶用量、料液比(底物浓度)、酶解时间对水解度的影响,采用正交试验对酶解条件进行了优化。结果显示,木瓜蛋白酶是牦牛骨蛋白水解的适宜催化剂。在一定条件下,样品水解度随酶用量和酶解时间的增加而增大,底物浓度过低或过高均不利于原料中蛋白质的酶解。木瓜蛋白酶水解牦牛骨蛋白最佳条件为:酶解温度60℃,酶解时间8 h,酶用量3500 U/g蛋白质,料液比1:25(g:m l)。  相似文献   

20.
The protein hydrolysates of two types, fodder and for microbiological medium, have been obtained in vitro, using protein containing wastes of Iceland scallop fishery (WSF) and enzyme preparation from the red king crab hepatopancreas. The degree of protein degradation and composition of obtained hydrolysates were analyzed. Intensive protein hydrolysis was necessary to obtain the microbiological diagnostic cultural media that fit trophic requirements for 12 microbial test-cultures. Addition of the fodder protein hydrolysate to diet of juvenile salmons Salmo salar during mixed feeding produces a positive effect on their survival; the 5 and 20% replacement of fish flour by the fodder hydrolysate results in a reduction of fish mortality by 21 and 57%, respectively. The living weight of chickens increased by 15% after substitution of the 10% fish flour by the fodder WSF hydrolysate in their diet. The results obtained can be explained by a more effective assimilation of partly hydrolyzed proteins in comparison with native ones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号