首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Human skin hyperpigmentation disorders occur when the synthesis and/or distribution of melanin increases. The distribution of melanin in the skin is achieved by melanosome transport and transfer. The transport of melanosomes, the organelles where melanin is made, in a melanocyte precedes the transfer of the melanosomes to a keratinocyte. Therefore, hyperpigmentation can be regulated by decreasing melanosome transport. In this study, we found that an extract of Saururus chinensis Baill (ESCB) and one of its components, manassantin B, inhibited melanosome transport in Melan‐a melanocytes and normal human melanocytes (NHMs). Manassantin B disturbed melanosome transport by disrupting the interaction between melanophilin and myosin Va. Manassantin B is neither a direct nor an indirect inhibitor of tyrosinase. The total melanin content was not reduced when melanosome transport was inhibited in a Melan‐a melanocyte monoculture by manassantin B. Manassantin B decreased melanin content only when Melan‐a melanocytes were co‐cultured with SP‐1 keratinocytes or stimulated by α‐MSH. Therefore, we propose that specific inhibitors of melanosome transport, such as manassantin B, are potential candidate or lead compounds for the development of agents to treat undesirable hyperpigmentation of the skin.  相似文献   

4.
5.
Transforming growth factor-beta1 (TGFbeta1) downregulates tyrosinase in B16 melanoma cells by decreasing gene expression and the intracellular half-life of the enzyme, but does not block tyrosinase stimulation by alpha-melanocyte stimulating hormone (alphaMSH). In the presence of both agents, the enzymatic activity is intermediate between the one of cells treated with either agent alone. Here we show that TGFbeta1 equally inhibits the melanogenic activities of melan-a melanocytes and B16 melanoma cells, thus validating the B16 model. In both cell types, TGFbeta1 (10(-10) M, 48 h) inhibited to comparable levels tyrosine hydroxylation and melanin formation from L-tyrosine. Thus, the inhibitory effect is exerted mainly at the rate limiting step of the pathway. By means of quantitative image analysis techniques, we also studied the effects of TGFbeta1 and alphaMSH on melanosome number, volume density and maturation degree. alphaMSH (10(-7) M, 48 h) increased 7-fold melanosome volume density, whereas TGFbeta1 by itself had no significant effect. However, melanosomal volume density was intermediate in cells treated with both agents, as compared to control or alphaMSH-treated cells. Moreover, TGFbeta1 blocked the alphaMSH-elicited increase in the number of melanosomes. Control and alphaMSH-treated melanocytes contained more stage I+II premelanosomes and stage IV, fully melanized organelles than partially melanized stage III melanosomes. TGFbeta1 increased the percentage of stage III melanosomes. This trend was even more marked in cells treated with alphaMSH and TGFbeta1. The accumulation of incompletely melanized melanosomes is consistent with the inhibition of melanin formation activity by TGFbeta1 and with its hypopigmenting effect.  相似文献   

6.
The ultrastructural characteristics of melanosomes and premelanosomes observed during the biogenesis of melanosomes in liver pigment cells of the neotenic cave salamander Proteus anguinus (Proteidae) are described. It is well known that amphibian liver pigment cells, also known as Kupffer cells (KC), contain melanosomes and are able to synthesize melanin. Liver pigment cells of P. anguinus contain numerous siderosomes and melanosomes. The melanosomes are grouped together within single‐membrane‐bounded bodies, named as ‘clusters of melanosomes’ or ‘melanosomogenesis centers’. Inside such clusters, different structures are present: (1) filament‐like structures, characteristic of the initial stage of melanosome biogenesis, (2) medium electron‐dense melanosomes in different stages of melanization, (3) melanosomes with an electron‐dense cortical area and a less electron‐dense medullar area, and (4) uniformly highly electron‐dense mature melanosomes or melanin granules. Histochemical and cytochemical dihydroxyphenylalanine (DOPA) oxidase reactions in pigment cells were positive. Our results confirm the ability of amphibian KC to synthesize melanin and contribute to this little known subject.  相似文献   

7.
Several different in vivo and in vitro bioassays are used to evaluate melanosome transfer efficacy from melanocytes to keratinocytes. However, these methods are complicated and time consuming. Here, we report on a simple, rapid, direct, and reliable in vitro method for observing the process of melanosome transfer from melanocytes to keratinocytes. First, we selected and tested a melanoma cell line RPMI-7951 that can normally synthesize melanin and transfer from mature melanosomes to keratinocytes in vitro. We cocultured these cells with a human ovarian teratoma transformed epidermal carcinoma cell line, which is also capable of accepting melanosomes transferred from melanocytes, as in normal keratinocytes. The cells were cocultured for 24-72 h and double labeled with FITC-conjugated antibody against the melanosome-associated protein TRP-1, and with Cy5-conjugated antibody against the keratinocyte-specific marker keratin 14. The cells were examined by fluorescence microscope and flow cytometry. Melanosome transfer from melanocytes to keratinocytes increased in a time-dependent manner. To verify the accessibility of this method, the melanosome transfer inhibitor, a serine protease inhibitor, 4-(2-aminoethyl) benzenesulfonyl fluoride hydrochloride, and a melanosome transfer stimulator, alpha-melanocyte-stimulating hormone, were added. The serine protease inhibitor decreased melanosome transfer, and alpha-melanocyte-stimulating hormone increased melanosome transfer, in a dose-dependent manner. In conclusion, this is a simple, rapid, and effective model system to quantify the melanosome transfer efficacy from melanocytes to keratinocytes in vitro.  相似文献   

8.
Assembly, target‐signaling and transport of tyrosinase gene family proteins at the initial stage of melanosome biogenesis are reviewed based on our own discoveries. Melanosome biogenesis involves four stages of maturation with distinct morphological and biochemical characteristics that reflect distinct processes of the biosynthesis of structural and enzymatic proteins, subsequent structural organization and melanin deposition occurring in these particular cellular compartments. The melanosomes share many common biological properties with the lysosomes. The stage I melanosomes appear to be linked to the late endosomes. Most of melanosomal proteins are glycoproteins that should be folded or assembled correctly in the ER through interaction with calnexin, a chaperone associated with melanogenesis. These melanosomal glycoproteins are then accumulated in the trans Golgi network (TGN) and transported to the melanosomal compartment. During the formation of transport vesicles, coat proteins assemble on the cytoplasmic face of TGN to select their cargos by interacting directly or indirectly with melanosomal glycoproteins to be transported. Adapter protein‐3 (AP‐3) is important for intracellular transport of tyrosinase gene family proteins from TGN to melanosomes. Tyrosinase gene family proteins possess a di‐leucine motif in their cytoplasmic tail, to which AP‐3 appears to bind. Thus, the initial cascade of melanosome biogenesis is regulated by several factors including: 1) glycosylation of tyrosinase gene family proteins and their correct folding and assembly within ER and Golgi, and 2) supply of specific signals necessary for intracellular transport of these glycoproteins by vesicles from Golgi to melanosomes.  相似文献   

9.
10.
Through a process known as melanogenesis, melanocyte produces melanin in specialized organelles termed melanosomes, which regulates pigmentation of the skin, eyes, and hair. Gp96 is a constitutively expressed heat shock protein in the endoplasmic reticulum whose expression is further upregulated upon ultraviolet irradiation. However, the roles and mechanisms of this chaperone in pigmentation biology are unknown. In this study, we found that knockdown of gp96 by RNA interference significantly perturbed melanin synthesis and blocked late melanosome maturation. Gp96 knockdown did not impair the expression of tyrosinase, an essential enzyme in melanin synthesis, but compromised its catalytic activity and melanosome translocation. Further, mice with melanocyte‐specific deletion of gp96 displayed decreased pigmentation. A mechanistic study revealed that the defect in melanogenesis can be rescued by activation of the canonical Wnt pathway, consistent with the critical roles of gp96 in chaperoning Wnt‐coreceptor LRP6. Thus, this work uncovered the essential role of gp96 in regulating melanogenesis.  相似文献   

11.
Melanin pigments contained in organelles (melanosomes) impart earthy colors to feathers. Such melanin‐based colors are distributed across birds and thought to be the ancestral color‐producing mechanism in birds. However, we have had limited data on melanin‐based color and melanosome diversity in Palaeognathae, which includes the flighted tinamous and large‐bodied, flightless ratites and is the sister taxon to all other extant birds. Here, we use scanning electron microscopy and spectrophotometry to assess melanosome morphology and quantify reflected color for 19 species within this clade. We find that brown colors in ratites are uniquely associated with elongated melanosomes nearly identical in shape to those associated with black colors. Melanosome and color diversity in large‐bodied ratites is limited relative to other birds (including flightless penguins) and smaller bodied basal maniraptoran dinosaur outgroups of Aves, whereas tinamous show a wider range of melanosome forms similar to neognaths. The repeated occurrence of novel melanosome forms in the nonmonophyletic ratites suggests that melanin‐based color tracks changes in body size, physiology, or other life history traits associated with flight loss, but not feather morphology. We further anticipate these findings will be useful for future color reconstructions in extinct species, as variation in melanosome shape may potentially be linked to a more nuanced palette of melanin‐based colors.  相似文献   

12.
13.
The present study reports the results of a morpho‐functional analysis of spleen pigmented cells from Rana esculenta L. and comparison with liver melanin‐synthesizing cells, belonging to the macrophage cell lineage. Cytological and cytochemical analyses show that parenchymal pigmented cells of the spleen, like those of the liver, are positive to peroxidase and lipase reactions and have phagocytic properties. The observation of premelanosomes in various stages of differentiation, together with the demonstration of dopa oxidase activity in the melanosome proteins, indicate that spleen pigmented macrophages have endogenous melanogenic ability as do liver pigmented macrophages. Attempts to demonstrate tyrosine‐hydroxylase activity in melanosome protein extracts from frog spleen and liver, using the same protocol as for mammalian tyrosinases, gave negative results. As regards the dopa oxidase activity revealed, some of its properties differ from the typical behaviour observed for tyrosinases from different sources. Peroxidase activity is shown in spleen and liver melanosome proteins with p‐phenylenediamine‐pyrocatechol (PPD‐PC), and not with typical peroxidase substrates. Suitable inhibition tests revealed that dopa oxidase and peroxidase activities might be supported by two different proteins. Liver melanosome extracts display a very strong laccase (dimethoxyphenol‐oxidase) activity but spleen extracts do not. Differences observed in the enzymatic properties of the spleen and liver melanosomes suggest that pigmented macrophages may undergo tissue‐specific differentiation. These preliminary data show that the melanin pathway of pigmented macrophages is different from that of melanocytes and may pave the way to identification of a new melanogenic pathway in vertebrates.  相似文献   

14.
The ink sac epithelium of the cuttlefish Sepia officinalis was investigated by electron microscopy. Melanogenesis in a simplified view seems to follow the general scheme of melanin formation in vertebrates. First, a membrane-bound protein matrix is formed, which is called an early stage melanosome. The early stage melanosomes are more or less irregular in shape with a size up to 1.5 μm and contain membranous, granular, or vesicular material. They seem to originate from Golgi bodies and/or endoplasmic reticulum. Membranes that frequently are present in the early stage melanosomes may originate from fusion of vesicles or from incorporation of Golgi membranes into early stage melanosomes. Free cytoplasmic material or mitochondria probably are also incorporated into the early stage melanosomes or melanosomes. Therefore, the origin of the early stage melanosomes seems to be similar to that of autophagosomes. The early stage melanosomes mature to melanosomes in which several dozen melanin granules are formed. These melanosomes, at last, release the melanin granules together with other cellular material, including early stage melanosomes, into the lumen of the ink gland. This finding confirms the earlier postulated holocrine character of the release. Active tyrosinase was localized in the lumen of the ink sac as already shown by biochemical methods. There was also additional evidence that most of the material of broken down cells inside the lumen of the ink sac seems to be converted into melanin granules.  相似文献   

15.
Melanin, the major determinant of skin colour, is a tyrosine‐based heteropolymer of indeterminate molecular weight. In vivo, melanin synthesis occurs within highly specialized organelles called melanosomes. Coated vesicles encapsulating the enzyme tyrosinase and tyrosinase related proteins, fuse with premelanosomes that contain structural proteins to form mature melanosomes. Coated vesicles and premelanosomes have been shown to have only melanin monomers but not the polymer. Our earlier results have clearly shown that the presence of proteins other than tyrosinase are critical for the post‐tyrosinase steps of melanin polymerization at acidic pH. Proteins in melanosomes are difficult to purify because of their firm association with melanin. Thus, with progressive melanization, melanoproteins become progressively insoluble. In this paper, we discuss the isolation and purification of melanosomal proteins and their role in melanin polymerization. We have hypothesized that the initiation of polymerization and the binding of melanin to proteins are two discrete events and we have developed assays to quantify these events. Purified melanosomal proteins differ in their ability to polymerize melanin monomers. Further, we have also shown that two polypeptides (28 and 45 kDa) purified from melanosomes inhibit melanin polymerization but can bind preformed melanin. In conclusion, melanosomal proteins regulate melanin polymerization and differ in their ability to bind melanin. Polymerization and binding abilities of melanosomal proteins are specific to each protein and melanin–protein interaction is not nonspecific.  相似文献   

16.
17.
Syndecan‐2, a transmembrane heparan sulfate proteoglycan that is highly expressed in melanoma cells, regulates melanoma cell functions (e.g. migration). Since melanoma is a malignant tumor of melanocytes, which largely function to synthesize melanin, we investigated the possible involvement of syndecan‐2 in melanogenesis. Syndecan‐2 expression was increased in human skin melanoma tissues compared with normal skin. In both mouse and human melanoma cells, siRNA‐mediated knockdown of syndecan‐2 was associated with reduced melanin synthesis, whereas overexpression of syndecan‐2 increased melanin synthesis. Similar effects were also detected in human primary epidermal melanocytes. Syndecan‐2 expression did not affect the expression of tyrosinase, a key enzyme in melanin synthesis, but instead enhanced the enzymatic activity of tyrosinase by increasing the membrane and melanosome localization of its regulator, protein kinase CβII. Furthermore, UVB caused increased syndecan‐2 expression, and this up‐regulation of syndecan‐2 was required for UVB‐induced melanin synthesis. Taken together, these data suggest that syndecan‐2 regulates melanin synthesis and could be a potential therapeutic target for treating melanin‐associated diseases.  相似文献   

18.
Melanogenesis refers to the biosynthesis of melanin pigment in pigment cells called melanocytes. Melanins are mixed biopolymers formed during a series of oxidation/reduction reactions that are initiated by the enzymatic hydroxylation of L-tyrosine to L-dopa. In living cells, melanogenesis is limited to melanosomes, the membrane bounded microscopic secretory granules of melanocytes. Melanosomes may be secreted into the environment as, for example, from the squid's ink gland; or be transferred to neighboring cells, such as the keratinocytes in human skin and hair; or they may remain within the pigment cell and change only their subcellular localization, as in the rapidly color-changing dermis of lower vertebrates. Regulation of the melanocytic phenotype involves synthesis of the biosynthetically active subcellular apparatus of melanogenesis, premelanosomes and tyrosinase, and the utilization of the final product, melanized melanosomes, in the translocation and secretory processes mentioned above. Genetic information for this regulation is stored in the nuclear genome whose expression is controlled by the intra- and extracellular environment. As premelanosomes become biosynthetically active, they mature into melanosomes by fusing with vesicles derived from the trans-Golgi network and the plasmalemma, thereby internalizing and incorporating contents and membrane components from inside the cell and the cell surface. In the process, melanosomes become acidified. The thesis pursued in this review explores the importance of the melanosome as the final common pathway of regulation of melanin biosynthesis.  相似文献   

19.
Xanthohumol (XH) is the most abundant prenylated flavonoid found in the hop plant (Humulus lupulus L.) and has previously been shown to have depigmenting effects in B16F10 mouse melanoma cells; however, studies of its depigmenting efficacy in human melanocytes are still lacking. In this work, we explored the effects of XH on melanogenesis in MNT-1 human melanoma cells and normal human melanocytes from darkly-pigmented skin (HEM-DP). XH was screened for cytotoxicity over 48 h, and subsequently tested on melanogenesis in MNT-1 cells. XH was further tested in HEM-DP cells for melanin synthesis and melanosome export; dendricity was quantitated to assess effects on melanosome export. Melanosome degradation was studied in human keratinocytes (HaCaT). Our results showed that XH inhibited melanin synthesis in MNT-1 cells at 30 μM but increased intracellular tyrosinase activity without affecting ROS levels. In HEM-DP cells, XH robustly suppressed cellular tyrosinase activity at nontoxic concentrations (2.5–5 μM) without any effect on melanin synthesis. However, XH inhibited melanosome export by reducing dendrite number and total dendrite length. Further testing in HaCaT cells demonstrated that XH induced melanosome degradation at low micromolar concentrations without any cytotoxicity. In summary, our results demonstrate that XH at low micromolar concentrations might hold promise as a potent inhibitor of human pigmentation by primarily targeting melanin export and melanin degradation. Further studies to elucidate the signaling mechanisms of action of melanosome export inhibition by XH and in vivo efficacy are warranted.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号