首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
R.M. Holdo 《植被学杂志》2006,17(3):369-378
Questions: How does tree growth in a tropical woodland savanna vary as a function of size, and how is it affected by competition from neighbours, site attributes, and damage caused by disturbance? Location: western Zimbabwe. Methods: Trees of common species were tagged, mapped, and measured annually between 2001 and 2003 in a Kalahari sand woodland savanna. Diameter increments were analysed with mixed model regressions for the largest ramet in each genet. Stem diameter and damage, soil texture, and indices of competition at multiple spatial scales were used as covariates. Results: Stem diameter increased initially and then declined as a function of size in undamaged trees, which grew faster than damaged trees. Growth in damaged trees declined with size. No site differences were detected, and there was evidence for between‐tree competition on growth only in the fastest‐growing species, Brachystegia spiciformis. In several species the growth rate of the largest ramet increased as a function of the basal area of secondary ramets, contrary to expectations. For many species, the growth models showed poor explanatory power. Conclusions: Growth in Kalahari sand savanna trees varies as a function of size and changes in tree architecture caused by disturbance agents such as fire, frost, and elephant browsing. Disturbance may thus play an important role on vegetation dynamics through its effects on growth in the post‐disturbance phase. Growth is highly stochastic for some species in this system, and more deterministic in others. It is hypothesized that this dichotomy may be driven by differences in rooting depth among species.  相似文献   

2.
Fire is a key factor affecting the survivorship and dynamics of woody plants in savannas, but few empirical studies in savanna vegetation have investigated correlates of mortality following fire at the level of individual stems. A study of stem mortality as a function of size, neighbourhood effects, and prior damage (mainly caused by elephants) was undertaken in an area of Kalahari sand vegetation in western Zimbabwe. Stem and whole-plant mortality were quantified for the dominant stems of 557 trees in 4 plots following dry season unplanned fires in 2001. Two plots were located in areas that had been affected by frost earlier in the season, and 2 in areas that had not. Mortality was also recorded for 1762 trees in 20 unburned reference plots, also classified according to the presence of frost damage. Mortality estimators were constructed with a maximum likelihood regression method. Whole-plant mortality was low (on the order of 1–2%) compared with stem mortality, which in burned plots approximated 100% for the smallest size classes and declined as a function of stem diameter. Fire-driven mortality was lower in stems protected by the crowns of larger trees than in stems that were in the open. There was also evidence to suggest that the effects of fire are exacerbated by the prior action of frost and elephant herbivory.  相似文献   

3.
Elephant and fire are considered to be among the most important agents that can modify the African savanna ecosystem. Although the synergistic relationship between these two key ecological drivers is well documented, it has proved much more difficult to establish the relative effects they have on savanna vegetation structure at a fine-scale over time. In this study, we explore the comparative impacts of fire and elephant on 2,522 individually identified large trees (≥5 m in height) in the Kruger National Park, South Africa. Data were collected from 21 transects first surveyed in April 2006 and resurveyed in November 2008, to determine the relative importance of past damage by these agents on subsequent impacts and mortality. The occurrence of fire or elephant damage in 2006 affected the amount of tree volume subsequently removed by both these agents; elephant removed more tree volume from previously burned trees and the impact of subsequent fire was higher on previously burned or elephant-utilized trees than on undamaged trees. Mortality was also affected by an interaction between previous and recent damage, as the probability of mortality was highest for trees that suffered from fire or elephant utilization after being pushed over. Subsequent fire damage, but not elephant utilization, on debarked trees also increased the probability of mortality. Mortality was twice (4.6% per annum) that of trees progressing into the ≥5 m height class, suggesting an overall decline in large tree density during the 30-month study period. The responses of large trees were species and landscape-specific in terms of sensitivity to elephant and fire impacts, as well as for levels of mortality and progression into the ≥5 m height class. These results emphasize the need for fine-scale site-specific knowledge for effective landscape level understanding of savanna dynamics.  相似文献   

4.
The substantial increase in elephant populations across many areas in southern Africa over past decades is prompting concerns about the effects on biodiversity. We investigated the outcomes of elephant disturbance on tree-species presence, density, and richness, and on alpha and beta diversity within riparian woodland in Chobe National Park, Botswana. We enumerated all tree species occurring in 32 plots (0.06 ha) along the Chobe riverfront. Plots were stratified by soil type (nutrient-rich alluvium vs. nutrient-poor Kalahari sand covering alluvium) and elephant impact (high vs. low impact on both soil types). We tested four predictions: elephants reduce tree density, richness, and alpha diversity; beta diversity is greater in vegetation subjected to high elephant impact; elephant impact on tree-species composition is greater on nutrient-poor than on nutrient-rich soil; and the loss or decline of abundant tree species on heavily disturbed sites is offset by an increase in abundance of functionally similar species, ones that are minor on lightly disturbed sites. Elephant browsing substantially affected tree-species composition, reducing density, species richness, evenness, and alpha diversity but had no effect on beta diversity. The dominant species on relatively undisturbed areas were partly replaced by functionally similar species on heavily disturbed sites. Soil type influenced species composition on lightly disturbed sites but was less important at higher elephant densities. Our findings are important for areas with extreme dry-season densities of elephants but should not be extrapolated to infer purported effects of elephants on tree diversity at lower densities.  相似文献   

5.
The vegetation dynamics of the savanna ecosystem are driven by complex interactions between biotic and abiotic factors, and thus are expected to exhibit emergent properties of biocomplexity. We explore the relative importance of static and dynamic drivers in explaining the patterns of mortality of large trees in the Kruger National Park, South Africa. Data on large trees were collected from 22 transects in April 2006, and these transects were re‐sampled in November 2008. Of the 2546 individually‐identified trees that were re‐sampled, 290 (11.4%) died in the interim. We tested several competing hypotheses with varying levels of complexity, and found that mortality of large trees was affected mainly by both static (geophysical and landscape characteristics) and dynamic (elephant damage and fire) factors that were either additive or interactive in their effects. Elephant damage was the main predictor of tree mortality, but fire also played an important role depending on the landscape type. Other static variables such as position‐on‐slope, height below canopy, and altitude had weak effects in explaining tree mortality. These results indicate that keystone features such as large trees, show differential vulnerability to mortality that is landscape‐specific. For conservation managers, this implies that the dynamic drivers (elephant and fire) of tree mortality have to be managed at the specific landscape‐level. We suggest that this emergent biocomplexity in the spatial and temporal patterns of large tree mortality is not unique to the African savannas, but is likely widespread across heterogeneous landscapes.  相似文献   

6.
Sustained elephant browsing and intense burning could result in the loss of woodlands under conditions where elephant densities are high, such as in northern Botswana. Three woodland types dominated by Acacia erioloba, Baikiaea plurijuga and Colophospermum mopane were monitored in plots and contemporary recruitment rates of woody plants were compared with the associated local elephant densities and fire occurrences. Woodland types differed with respect to structure, extent of elephant damage and the occurrence of fire. Canonical correlations indicated that high extent of fire damage and high elephant densities did not covary within the woodland types investigated. Low tree densities in some woodland types were associated with high elephant densities and new elephant damage to plants increased with high elephant densities during the dry season. Plots with an apparent high fire frequency had lower tree densities and higher cover abundance of shrubs and seedlings.The annual rates of tree recruitment/loss in each woodland type were estimated through a model based on observed seedling recruitment, mortality and reversal to lower height classes due to combinations of fire occurrence and elephant browsing. The model suggested that elephants induce tree loss in woodlands dominated by plant species which are principal food sources. Fire however, seems to have a widespread effect across woodlands which could result in extensive tree loss.  相似文献   

7.
Fires in arid environments are rare, so are not deemed as important as in mesic savannas. We investigated mortality and resprouting amongst camelthorn (Acacia erioloba) after two fires (at Vaalbos National Park and Susanna farm) in semi‐arid savanna near Kimberley, South Africa. Resprouting response 18 months after a fire was the greatest amongst <6.5 m high trees; extent of foliage damage by fire and bark thickness were the next best predictors of resprouting vigour amongst that size class. The largest size class (8–12 m height) of A. erioloba suffered the greatest mortality rates (40% and 83% at Vaalbos and Susanna respectively), with damage either severe or minor. We hypothesize that large tree mortality rates are partly attributable to well‐developed assemblages of flammable subcanopy plants producing a bonfire beneath trees. These mortality rates indicate that fire reduces both tree abundance and relative representation of large trees, and although able to resprout, A. erioloba is fire‐sensitive, which may explain its restriction to Kalahari sands where rainfall is less than 900 mm year?1. Therefore, although relatively infrequent, fires shape Kalahari woodland structure, particularly as A. erioloba is long lived and slow growing. Large trees have been shown to be important to biodiversity in the southern Kalahari, so frequent fires could impact biodiversity.  相似文献   

8.
Elephant impacts on spider assemblages, and the potential use of spiders as indicators of habitat changes was assessed in central Maputaland, South Africa. Three habitats, namely undisturbed sand forest, elephant disturbed sand forest and mixed woodland, were sampled. To ensure a thorough representation of all spider guilds, spiders were collected by tree beating, sweep netting, active searching, leaf litter sifting and pitfall traps. In total, 2808 individual spiders, representing 36 families, 144 determined genera and 251 species were collected. Spider abundance was highest in the undisturbed sand forest (n = 1129, S = 179), followed by elephant disturbed sand forest (n = 1006, S = 165) and mixed woodland (n = 673, S = 171). Assemblages of the two sand forests were more similar than to the mixed woodland assemblage. Active hunting species were indicators of the more open vegetation of elephant disturbed sand forest (six active hunters, no web‐builders) and mixed woodland (ten active hunters, one web‐builder), whereas web‐builders are indicators of the dense, complex vegetation structure of undisturbed sand forest (six web‐builders, three active hunters). Elephant‐induced changes to the vegetation structure in this high diversity, high endemism region result in changes in the composition of spider assemblages, and may need to be mitigated by management intervention.  相似文献   

9.
This study determined the abundance, density and population structure of the marula tree, Sclerocarya birrea, in three game reserves in South Africa, and assessed patterns and amounts of new and cumulative impact of elephants. Elephant feeding was very patchy so several attributes of individual trees, sampled transects and communities that might influence elephant herbivory were investigated. The incidence and type of elephant impact (bark, branch or stem breakage) were significantly related to tree diameter, but not to fruiting nor proximity to roads. At the transect level, elephant impact was influenced by density of marula trees, but was not influenced by proximity to roads, nor proportion of marula trees bearing fruits in the vicinity. At the community level, elephant impact was higher on reserves with higher total marula densities. Fourfold differences in elephant densities (0.08–0.30 elephants km?2) did not explain marula consumption: the percentage of trees with branch damage was similar across reserves and bark damage was inversely proportional to elephant density. Variation across reserves may reflect local and landscape‐level marula tree abundance, differences in alternative food plants and individual feeding habits. The recorded levels of impact appeared to be sustainable because mortality rates were low, affected trees often recovered, and small trees were not preferentially preyed upon.  相似文献   

10.
Humans have played a major role in altering savanna structure and function, and growing land‐use pressure will only increase their influence on woody cover. Yet humans are often overlooked as ecological components. Both humans and the African elephant Loxodonta africana alter woody vegetation in savannas through removal of large trees and activities that may increase shrub cover. Interactive effects of both humans and elephants with fire may also alter vegetation structure and composition. Here we capitalize on a macroscale experimental opportunity – brought about by the juxtaposition of an elephant‐mediated landscape, human‐utilized communal harvesting lands and a nature reserve fenced off from both humans and elephants – to investigate the influence of humans and elephants on height‐specific treefall dynamics. We surveyed 6812 ha using repeat, airborne high resolution Light Detection and Ranging (LiDAR) to track the fate of 453 685 tree canopies over two years. Human‐mediated biennial treefall rates were 2–3.5 fold higher than the background treefall rate of 1.5% treefall ha–1, while elephant‐mediated treefall rates were 5 times higher at 7.6% treefall ha–1 than the control site. Model predictors of treefall revealed that human or elephant presence was the most important variable, followed by the interaction between geology and fire frequency. Treefall patterns were spatially heterogeneous with elephant‐driven treefall associated with geology and surface water, while human patterns were related to perceived ease of access to wood harvesting areas and settlement expansion. Our results show humans and elephants utilize all height classes of woody vegetation, and that large tree shortages in a heavily utilized communal land has transferred treefall occurrence to shorter vegetation. Elephant‐ and human‐dominated landscapes are tied to interactive effects that may hinder tree seedling survival which, combined with tree loss in the landscape, may compromise woodland sustainability.  相似文献   

11.
Disturbances and environmental heterogeneity are two factors thought to influence plant species diversity, but their effects are still poorly understood in many ecosystems. We surveyed understory vegetation and measured tree canopy cover on permanent plots spanning an experimental fire frequency gradient to test fire frequency and tree canopy effects on plant species richness and community heterogeneity within a mosaic of grassland, oak savanna, oak woodland, and forest communities. Species richness was assessed for all vascular plant species and for three plant functional groups: grasses, forbs, and woody plants. Understory species richness and community heterogeneity were maximized at biennial fire frequencies, consistent with predictions of the intermediate disturbance hypothesis. However, overstory tree species richness was highest in unburned units and declined with increasing fire frequency. Maximum species richness was observed in unburned units for woody species, with biennial fires for forbs, and with near-annual fires for grasses. Savannas and woodlands with intermediate and spatially variable tree canopy cover had greater species richness and community heterogeneity than old-field grasslands or closed-canopy forests. Functional group species richness was positively correlated with functional group cover. Our results suggest that annual to biennial fire frequencies prevent shrubs and trees from competitively excluding grasses and prairie forbs, while spatially variable shading from overstory trees reduces grass dominance and provides a wider range of habitat conditions. Hence, high species richness in savannas is due to both high sample point species richness and high community heterogeneity among sample points, which are maintained by intermediate fire frequencies and variable tree canopy cover.  相似文献   

12.
Bark damage resulting from elephant feeding is common in African savanna trees with subsequent interactions with fire, insects, and other pathogens often resulting in tree mortality. Yet, surprisingly little is known about how savanna trees respond to bark damage. We addressed this by investigating how the inner bark of marula (Sclerocarya birrea), a widespread tree species favoured by elephants, recovers after bark damage. We used a long‐term fire experiment in the Kruger National Park to measure bark recovery with and without fire. At 24 months post‐damage, mean wound closure was 98, 92, and 72%, respectively, in annual and biennial burns and fire‐exclusion treatments. Fire exclusion resulted in higher rates of ant colonization of bark wounds, and such ant colonization resulted in significantly lower bark recovery. We also investigated how ten common savanna tree species respond to bark damage and tested for relationships between bark damage, bark recovery, and bark traits while accounting for phylogeny. We found phylogenetic signal in bark dry matter content, bark N and bark P, but not in bark thickness. Bark recovery and damage was highest in species which had thick moist inner bark and low wood densities (Anacardiaceae), intermediate in species which had moderate inner bark thickness and wood densities (Fabaceae) and lowest in species which had thin inner bark and high wood densities (Combretaceae). Elephants prefer species with thick, moist inner bark, traits that also appear to result in faster recovery rates.  相似文献   

13.
This study identifies patterns of elephant Loxodonta africana africana impacts upon tree species and woody plant communities in Hluhluwe-Imfolozi Park, a South African savannahs/woodlands area. Elephants were reintroduced there from 1981, following more than 80 years of absence. Data were collected in 2003 on elephant impact on woodland in the Park. Different vegetation types were susceptible to different types and levels of damage by elephants, suggesting that elephants will not homogenize the vegetation. Elephants targeted larger stems for all types of damage, with a strong preference for some of the less abundant species such as Albizia versicolor (breaking and toppling) and Cordia caffra and Schotia brachypetala (debarking). Elephant impacts tended to be distributed evenly across the park landscape, irrespective of stem density or proximity to permanent water. Overall, elephants have little impact on slowing or reversing the spread of undesirable woody species, but are having a marked impact on certain less common tree species and larger tree size-classes in the Hluhluwe-Imfolozi Park.  相似文献   

14.
Abstract Seventy-three per cent of dry rainforest in Forty Mile Scrub National Park and large areas in adjacent savanna woodland have more than 5000 individuals per ha of lantana (Lantana camara L.). Transect studies in dry rainforest and savanna woodland across varying intensities of lantana infestation show a negative correlation between the density of lantana and tree cover in rainforest. The density of pig rooting is very high in areas of the dry rainforest on deep soil that was not heavily infested with lantana. It is suggested that the digging activities of these animals may cause tree death and subsequent increased light penetration, which favours lantana. The species richness of the dry rainforest declines as the density of lantana increases. However, the saplings and seedlings and the soil seed bank of dry rainforest and savanna woodland tree species have comparable densities in heavy and light lantana infestations. The proliferation of lantana results in the build up of heavy fuel loads across the boundary of dry rainforest and savanna woodland. Recent fires have killed the canopy trees in a large area of dry rainforest within the Park. Active management of Forty Mile Scrub National Park is urgent and some initiatives are suggested.  相似文献   

15.
Negative influences on the establishment and persistence of large trees used by tree‐nesting birds as nesting sites represent a potential threat to vultures and raptors. We monitored large trees and their surrounding vegetation and analysed whether trees with nesting sites are at risk due to elephant impact. Trees with nests did not differ in elephant impact from control trees without nests, and the survival rates of trees with nests and the actual nests within the trees showed that nests decreased at a faster rate than the trees themselves. Elephant damage did not affect the persistence of nests over the 5‐year monitoring period. However, the presence of insects and fungus on large trees was negatively related to tree survival, thereby indicating that elephant impact could indirectly facilitate insect and fungus attack and shorten the lifespan of a tree.  相似文献   

16.
Elephant are considered major drivers of ecosystems, but their effects within small-scale landscape features and on other herbivores still remain unclear. Elephant impact on vegetation has been widely studied in areas where elephant have been present for many years. We therefore examined the combined effect of short-term elephant presence (< 4 years) and hillslope position on tree species assemblages, resource availability, browsing intensity and soil properties. Short-term elephant presence did not affect woody species assemblages, but did affect height distribution, with greater sapling densities in elephant access areas. Overall tree and stem densities were also not affected by elephant. By contrast, slope position affected woody species assemblages, but not height distributions and densities. Variation in species assemblages was statistically best explained by levels of total cations, Zinc, sand and clay. Although elephant and mesoherbivore browsing intensities were unaffected by slope position, we found lower mesoherbivore browsing intensity on crests with high elephant browsing intensity. Thus, elephant appear to indirectly facilitate the survival of saplings, via the displacement of mesoherbivores, providing a window of opportunity for saplings to grow into taller trees. In the short-term, effects of elephant can be minor and in the opposite direction of expectation. In addition, such behavioural displacement promotes recruitment of saplings into larger height classes. The interaction between slope position and elephant effect found here is in contrast with other studies, and illustrates the importance of examining ecosystem complexity as a function of variation in species presence and topography. The absence of a direct effect of elephant on vegetation, but the presence of an effect on mesoherbivore browsing, is relevant for conservation areas especially where both herbivore groups are actively managed.  相似文献   

17.
  • Frost events occur with a significant frequency in savannas of the Southern Hemisphere, especially in the Cerrados of Brazil. One of the main strategies to deal with such events is to invest in thick and dense bark, which can insulate internal branch tissues and protect buds, essential to ensure resprouting if frost damage causes plant canopy die‐back. Such strategies may be fundamental to determine the persistence of savanna species in regions where low temperatures and frost events are recurrent.
  • Here we describe bud protection and bark strategies of 53 woody species growing in typical savanna vegetation of central Brazil. In addition, we used an experimental approach exposing branches to 0 °C to measure temperature variation in internal branch tissue and test its relationship to bud protection and bark properties.
  • We found that the majority of species (69%) showed medium to high bud protection against extreme temperatures; however, the degree of bud protection was not clearly related to bark properties, such as bark thickness and density. Bark density is a fundamental trait in determining protection against low temperatures (0 °C), since species with low bark density showed lower temperature variation in their internal branch tissues, independently of the bud protection degree.
  • Bark properties and bud protection are two different (albeit related) strategies for the protection and persistence of savanna trees under extreme environmental temperatures and can explain ecological observations related to savanna tree responses after frost events.
  相似文献   

18.
Woody plant encroachment of savanna ecosystems has been related to altered disturbance regimes, mainly fire suppression and herbivore exclusion. In contrast, neighbourhood interactions among resident and colonising woody species have received little attention, despite their likely influence on the pattern and rate of tree establishment. We examined how resident palm trees (Butia yatay) and established adults of two riparian forest tree species (Allophylus edulis and Sebastiania commersoniana) influenced seed arrival and seedling performance of the latter two species in a humid savanna of east-central Argentina. Seed traps and seedlings of both riparian species were placed in herbaceous openings, and beneath palm, conspecific and heterospecific adult trees in two unburned savanna patches, and were monitored for 2 years. Only seeds of the bird-dispersed Allophylus arrived in palm microsites, yet survival of Allophylus seedlings near adult palms was limited by animal damage through trampling and burrowing, a non-trophic mechanism of apparent competition. Seeds of both riparian species dispersed into conspecific microsites, although adult trees selectively reduced growth of conspecific seedlings, a pattern consistent with the “escape hypothesis”. Further, survival of Sebastiania increased in the moister Allophylus microsites, suggesting a one-way facilitative interaction between woody colonisers. Our results indicate that dispersal facilitation by resident savanna trees may be critical to riparian species invasion after fire suppression. Distance-dependent effects of conspecific and heterospecific adult trees could contribute to shape the subsequent dynamics of woody seedling establishment. Overall, we show that indirect interactions can play a prominent role in savanna encroachment by non-resident woody species.  相似文献   

19.
Owing to the late Pleistocene extinctions, the megafauna of Europe, Australia and the Americas disappeared, and with them the dispersal service they offered megafaunal fruit. The African savanna elephant, the largest remaining megaherbivore, offers valuable insights into the seed dispersal services provided by extinct megafauna in prehistoric times. Elephant seed dispersal studies have for the most part concentrated on African and Asian forest elephants. African savanna elephants are morphologically distinct from their forest counterparts. Like the forest elephants they consume large quantities of fruit from a large number of tree species. Despite this little is known of the savanna trees that rely on elephants for their dispersal or the spatial scale at which these seeds are dispersed. We combined information from feeding trials conducted on four park elephants with field telemetry data from 38 collared elephants collected over an 8‐year period in APNR/Kruger National Park to assess the seed dispersal service provided by savanna elephants. This study provides the first detailed account of the spatial scale at which African savanna elephants disperse seeds. Our mechanistic model predicts that 50 percent of seeds are carried over 2.5 km, and distances up to 65 km are achievable in maximum gut passage time. These findings suggest the savanna elephant as the longest distance terrestrial vertebrate disperser yet investigated. Maintaining their ecological role as a seed disperser may prove a significant factor in the conservation of large‐fruited tree diversity within the savannas. These results suggest that extinct megafauna offered a functionally unique dispersal service to megafaunal fruit.  相似文献   

20.
Abstract Horning vegetation, an expression of aggression predominately among adult males, may be universal among horned ungulates. We found that horning by wildebeest (Connochaetes taurinus) males had an important impact on the Serengeti ecosystem, Africa, from the 1960s to the 1980s, as the wildebeest population increased from 0.25 million to 1.5 million. Between 1979 and 2003, we sampled 2,626 trees and bushes to assess horning impacts. In the 1986 survey, 57% (n = 1,416) of trees and bushes had suffered moderate to severe horning injury. Severe damage frequency was highest (68%) in open grassland, where a few trees were exposed to many wildebeests, and lowest (24%) inside savanna woodland where wildebeest rarely go. Horning by 300,000–400,000 adult male wildebeest contributed to converting savanna woodland into tree savanna and open grassland. Horning by wildebeest, in combination with known impacts such as grazing, manuring, and trampling, may result in ecological impacts to Serengeti ecosystems only exceeded by the elephant (Loxodonta africana) and fire. More research is needed to understand the ecological and management implications of horning.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号