首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Acta Oecologica》1999,20(3):159-170
The distribution and abundance of soil crust lichens and bryophytes was examined in a patterned Callitris glaucophylla woodland in eastern Australia. Twenty-one lichen species and 26 bryophyte species were collected within thirty quadrats along a sequence of runoff, interception and runoff zones. Crust cover was significantly greatest in the interception zones (79.0 %), followed by the runoff zones (24.0 %), and lowest in the groved, runon zones (6.6 %). Lichens and bryophytes were distributed across all geomorphic zones, and, although there were significantly more moss species in the interception zones (mean = 9.1) compared with either the runoff (4.2) or runon (3.2) zones, the number of lichen species did not vary between zones. Ordination of a reduced data set of 32 species revealed a separation of taxa into distinct groups corresponding to the three geomorphic zones. Canonical correspondence analysis (CCA) of the 32 species and thirteen environmental variables revealed that the most important factors associated with the distribution of species were sheet and scarp erosion, soil stability and coherence, litter cover and crust cover. Surface cracking, microtopography and plant cover were of intermediate importance. The CCA biplot revealed that the timbered runon zones (groves) were dominated by `shade-tolerant' mosses Fissidens vittatus and Barbula hornschuchiana, whilst the heavily eroded runoff zones supported sparse populations of `erosion tolerant' lichens (Endocarpon rogersii) and mosses (Bryum argenteum and Didymodon torquatus). Interception zones supported a rich suite of `crust forming' mosses and lichens capable of tolerating moderate inundation by overland flow. Two other groups of taxa were identified by this analysis: the `pioneer' group, comprising mainly nitrogen-fixing lichens which occupy the zone of active erosion at the lower edge of the groves, and the `opportunists' dominated by liverworts, occupying the shallow depressions or bays at the margins of the groves and the interception zones. This study confirms that the non-vascular lichens and bryophytes in these arid soil crusts, are, like the vascular plants, strongly patterned according to geomorphic zone, being most strongly associated with soil surface and erosional features.  相似文献   

2.
We examined the dynamics of cryptogamic soil crusts in a derived (disclimax) grassland near Orange in southeastern Australia. Changes in the cover of cryptogamic crusts and floristics and abundance of the constituent species were measured on four treatments with two levels each of grazing and cultivation. Twenty‐two lichens, mosses and liverworts were found at the study site and, of these, 13 were collected in the quadrats. Three moss species (Barbula calycina, Eccremidium arcuatum and Bryum pachytheca) and one lichen species (Cladonia tessalata) accounted for 67% of total cover‐abundance scores. Generally, cover‐abundance was significantly higher in the unvegetated microsites than in the vegetated microsites. Species richness was not significantly different between the four grazing‐cultivation treatments but, on average, there were significantly more species in the unvegetated microsites (mean = 3.2 species) than in the vegetated microsites (0.54 species). Grazing and cultivation resulted in significantly greater cover of bare ground and consequently significantly greater crust cover. Averaged across all treatments, approximately half of the area of unvegetated soil was occupied by cryptogams. Overall, the results indicate that lichens and bryophytes are important components of derived temperate grasslands, surviving in even densely vegetated swards. This study suggests that strategies which disturb the soil surface (e.g. grazing and cultivation) will stimulate the abundance and cover of soil crust organisms by increasing the availability of unvegetated microsites.  相似文献   

3.
Questions: To what degree do biological soil crusts (BSCs), which are regulators of the soil surface boundary, influence associated microbial communities? Are these associations important to ecosystem functioning in a Mediterranean semi‐arid environment? Location: Gypsum outcrops near Belmonte del Tajo, Central Spain. Methods: We sampled a total of 45 (50 cm × 50 cm) plots, where we estimated the cover of every lichen and BSC‐forming lichen species. We also collected soil samples to estimate bacterial species richness and abundance, and to assess different surrogates of ecosystem functioning. We used path analysis to evaluate the relationships between the richness/abundance of above‐ and below‐ground species and ecosystem functioning. Results: We found that the greatest direct effect upon the ecosystem function matrix was that of the biological soil crust (BSC) richness matrix. A few bacterial species were sensitive to the lichen community, with a disproportionate effect of Collema crispum and Toninia sedifolia compared to their low abundance and frequency. The lichens Fulgensia subbracteata and Toninia spp. also had negative effects on bacteria, while Diploschistes diacapsis consistently affected sensitive bacteria, sometimes positively. Despite these results, very few of the BSC effects on ecosystem function could be ascribed to changes within the bacterial community. Conclusion: Our results suggest the primary importance of the richness of BSC‐forming lichens as drivers of small‐scale changes in ecosystem functioning. This study provides valuable insights on semi‐arid ecosystems where plant cover is spatially discontinuous and ecosystem function in plant interspaces is regulated largely by BSCs.  相似文献   

4.
Abstract Woody plants have been increasing in many woodland and savanna ecosystems owing to land use changes in recent decades. We examined the effects of encroachment by the indigenous shrub Leptospermum scoparium (Myrtaceae) on herb‐rich Eucalyptus camaldulensis woodlands in southern Australia. Species richness and compositional patterns were examined under the canopy of L. scoparium and in surrounding open areas to determine the species most susceptible to structural changes. Richness was significantly lower in areas of moderate to high L. scoparium cover (>15%), suggesting that a threshold shrub cover caused major change in this ecosystem. Shrubs were associated with a significant reduction in above‐ground biomass of the ground‐layer flora and a significant shift in community composition. The few species that were positively associated with high L. scoparium cover were also common in the woodland flora; no new species were recorded under the shrub canopy. Important environmental changes associated with L. scoparium cover were decreased light availability and increased litter cover, which were likely a consequence of encroachment. Leptospermum scoparium cover was also associated with greater surface soil moisture, which may be a consequence of increased shading under the shrub canopy or indicate favourable soil conditions for L. scoparium establishment. Reductions in species richness and abundance of the germinable seed bank were found in soil samples taken from under L. scoparium. With ongoing recruitment of L. scoparium and consequent increases in shrub cover, ground‐layer diversity in these species‐rich woodlands should continue to decline over time.  相似文献   

5.
The intermediate disturbance hypothesis (IDH) predicts that species diversity is maximized at moderate disturbance levels. This model is often applied to grassy ecosystems, where disturbance can be important for maintaining vascular plant composition and diversity. However, effects of disturbance type and frequency on cover and diversity of non-vascular plants comprising biological soil crusts are poorly known, despite their potentially important role in ecosystem function. We established replicated disturbance regimes of different type (fire vs. mowing) and frequency (2, 4, 8 yearly and unburnt) in a high-quality, representative Themeda australis–Poa sieberiana derived grassland in south-eastern Australia. Effects on soil crust bryophytes and lichens (hereafter cryptogams) were measured after 12 years. Consistent with expectations under IDH, cryptogam richness and abundance declined under no disturbance, likely due to competitive exclusion by vascular plants as well as high soil turnover by soil invertebrates beneath thick grass. Disturbance type was also significant, with burning enhancing richness and abundance more than mowing. Contrary to expectations, however, cryptogam richness increased most dramatically under our most frequent and recent (2 year) burning regime, even when changes in abundance were accounted for by rarefaction analysis. Thus, from the perspective of cryptogams, 2-year burning was not an adequately severe disturbance regime to reduce diversity, highlighting the difficulty associated with expression of disturbance gradients in the application of IDH. Indeed, significant correlations with grassland structure suggest that cryptogam abundance and diversity in this relatively mesic (600 mm annual rainfall) grassland is maximised by frequent fires that reduce vegetation and litter cover, providing light, open areas and stable soil surfaces for colonisation. This contrasts with detrimental effects of 2-year burning on native perennial grasses, indicating that this proliferation of cryptogams has potentially high functional significance for situations where vegetation cover is depleted, particularly for reducing soil erosion.  相似文献   

6.
Over the last 200 years the box woodlands of eastern Australia have been considerably altered by European farming practices. These changes have been accompanied by a reduction in the size and number of patches of vegetation as well as the quality of the understorey vegetation and underlying soil surface. We measured diversity and abundance of soil crust taxa in relation to habitat complexity, remnant area and width, diversity of vascular plants as well as the number, size and separation of patches of vegetation and grass butts (coarse-scale patchiness), and an index of surface stability derived from measures of seven soil surface features of small microsites (patches of bare/crusted, litter- or grass-covered soil; micro-scale) on both coarse- and fine-textured soils at 35 sites in south-eastern Australia. Fifty taxa were recorded from the 35 sites, and there were more taxa from sites with fine-textured soils (12.7) compared with coarse-textured soils (4.4). The soil crust community was dominated by a few relatively common species, with many species occurring at only a few sites. Half the number of species accounting for <1% of total abundance. Bare and crusted microsites supported more species and greater cover compared with grassy microsites. Crust diversity declined with increasing coarse-level disturbances (i.e. declines in habitat complexity, remnant area and width, and diversity of vascular plants) but the results were not consistent between soil types. No measures of fine-scale disturbance were related significantly to any of the crust diversity or abundance measures, and there was no evidence of a recent grazing effect on crust composition. The fact that few sites had many species (and visa versa) suggests to us that many sites are probably required to conserve soil crust taxa in these highly fragmented landscapes  相似文献   

7.
Biological soil crusts are common in many arid and semi-arid regions and they can alter microenvironments which are likely to directly and indirectly influence vascular plant establishment. The effect of biological soil crusts on germination is also influenced by the biological characteristics of the seeds themselves but rarely have the effects of both crust type and seed morphology on germination been examined in the same study. In this study, seed of five semi-arid woodland species with contrasting seed morphology were sown on top of patch types that commonly occur in natural woodlands (foliose lichen, short-turf moss, tree leaf litter, disturbed crust) and their emergence was followed. Percent germination varied between patch types and, for the largest-seeded species (Maireana excavata), final germination was significantly lower on the biological soil crust and litter patch types because they strongly acted as a physical barrier to seed penetration into the soil. The remaining four species showed no significant differences in final percent germination with patch type because most seeds either completely or partially penetrated the surface layer. Germination time courses, however, showed that biological soil crusts delayed the timing of germination of these species. Hence, soil crusts might differentially affect the spatial patterning of species in semi-arid woodlands by their subtle influence on seedling emergence that is determined by differences in seed morphology and subsequent positioning within crusts.  相似文献   

8.
Spatial and temporal patterns of riverine woodlands in arid regions of Africa are poorly documented despite their considerable conservation value. We studied 1540 ha of riverine woodland in the lower Turkwel River floodplain, Kenya, between 1990 and 1998. Forty‐one woodland patches were mapped and their soil physical and chemical characteristics, tree species diversity, woody cover, tree density, wood volume and woodland regeneration were determined. The riverine woodland comprised nine vegetation types and a total of 14 woody species. Woodland patch mosaics were associated with microtopographical features and selected soil attributes. The most important woody species were Hyphaene compressa H. Wendl., Acacia tortilis (Forssk.) Hayne and Cadaba rotundifolia Forssk. The exotic Prosopis chilensis (Mol.) St. was invading parts of the riverine woodland. Overall, woody species diversity was low compared to similar riverine woodlands in East Africa. Tree density, wood volume and woody plant regeneration declined over the 8‐year study period, while woody cover was unchanged. Reduced tree density, wood volume and regeneration of woody species might be linked to changes in river flood patterns following the impoundment of the Turkwel Gorge Dam. It is suggested that spatially heterogeneous and temporally stochastic regeneration events, together with occasional tree mortality caused by channel abandonment, create the complex pattern of woodland patches in the lower Turkwel River floodplain. The mapped woodland patches may serve as monitoring units, which in future could reveal the interplay between changes in flooding patterns as a result of dam impoundment, anthropogenic disturbance and the well‐being of the riverine woodlands.  相似文献   

9.
Biological soil crusts consisting of algae, cyanobacteria, lichens, fungi, bacteria, and mosses are common in habitats where water and nutrients are limited and vascular plant cover is discontinuous. Crusts alter soil factors including water availability, nutrient content, and erosion susceptibility, and thus are likely to both directly and indirectly affect plants. To establish this link, we must first understand the crust landscape. We described the composition, abundance, and distribution of microalgae in crusts from a periodically burned, xeric Florida shrubland, with the goal of understanding the underlying variability they create for vascular plants, as well as the scale of that variability. This is the first comprehensive study of crusts in the southeastern United States, where the climate is mesic but sandy soils create xeric conditions. We found that crusts were both temporally and spatially heterogeneous in depth and species composition. For example, cyanobacteria and algae increased in abundance 10-15 years after fire and away from dominant shrubs. Chlorophyll a levels recovered rapidly from small-scale disturbance relative to intact crusts, but these disturbances added to crust patchiness. Plants less than 1 m apart can experience different crust environments that may alter plant fitness, plant interactions, and plant community composition.  相似文献   

10.
Substantial recruitment of Callitris glaucophylla in woodland, Sclerolaena birchii in cleared woodland, and Astrebla lappacea in grassland is related to catastrophic events of the past century in the form of interactions between climate, the impact of European land use (sheep, cattle, rabbits) and the rabbit myxoma epizootic. The direct effect of rainfall on the demography of these species and its indirect effect through competition via suites of accompanying plant species are examined. Major long-term changes in plant populations are generated by extreme sequential events rather than by random isolated events. One of the most potent climatic agents for change in eastern Australia is the El Niño/Southern Oscillation phenomenon.  相似文献   

11.
Aim Water and nutrient availability are major limits to productivity in semi‐arid ecosystems; hence, ecological restoration often focuses on conserving or concentrating soil resources. By contrast, nutrient enrichment can promote invasion by exotic annuals, leading to restoration approaches that target reduction of soil nutrients. We aimed to explore potential biodiversity trade‐offs between these approaches by investigating relationships among soil nutrients, exotic annuals and native plant diversity and composition. In particular, we investigated the hypothesis that native plant diversity in semi‐arid to temperate woodlands reflects the productivity–diversity hypothesis, leading to hump‐backed relationships with soil nutrients such that (1) native plant diversity declines with increasing nutrient enrichment and (2) native diversity is limited at the lowest levels of soil fertility. Location Fragmented, long‐ungrazed Eucalyptus loxophleba subsp. loxophleba (York gum)–Acacia acuminata (jam) woodlands in the wheatbelt of South‐Western Australia. Methods We conducted stratified surveys of floristic composition and topsoil nutrient concentrations in 112 woodland patches. We used generalized linear models, structural equation models and ordinations to characterize relationships among soil nutrients, rainfall, exotic annuals and patch‐scale (100 m2) native plant composition and diversity. Results Patch‐scale native plant diversity declined strongly with increasing exotic abundance. This was partly related to elevated soil nutrient concentrations, particularly total nitrogen and available phosphorus. By contrast, there was little evidence for positive correlations between soil nutrients and native diversity, even at very low soil nutrient concentrations. Main conclusions Minimizing weed invasions is crucial for maximizing native plant diversity in E. loxophleba woodlands and could include nutrient‐depleting treatments without substantially compromising the functional capacity of soils to maintain native plant richness and composition. More broadly we emphasize that understanding relationships among ecosystem productivity, plant diversity and exotic invasions in the context of associated theoretical frameworks is fundamental for informing ecological restoration.  相似文献   

12.
In recent years, the impacts of rapidly increasing populations of feral horses and deer on the vegetation and stability of soils have become highly visible and widespread in Kosciuszko National Park. We investigated these impacts in the White Cypress Pine (Callitris glaucophylla Joy Thomps. & L.A.S. Johnson) – White Box (Eucalyptus albens Benth) woodlands of the lower Snowy River valley. This woodland is a component of the White Box‐Yellow Box‐Blakely's Red Gum Grassy Woodland and Derived Native Grasslands complex that is nationally listed as a critically endangered ecological community. To investigate the severity of the impacts of feral horse (Equus caballus) and deer (Dama dama and Rusa unicolor) in the valley in 2013 and 2017/18, we surveyed fenced exclosures and paired grazed plots that were first established and surveyed in 1984 and re‐surveyed in 1987. Using LFA and VAST methodologies (not used in 1987), we compared the relative response of environmental variables in plots inside and outside the exclosures in an attempt to ascertain recent herbivore impacts. While there was no evidence of horses or deer from dung surveys in 1987, in 2018, 84% of the dung was from horses, 13% from deer, 1% from rabbits and 2% from macropods. Total herbivore dung density increased fourfold since the 1987 survey. On the understanding that all plots had the same starting condition in 1984 with respect to prior herbivory, we deduce that horses and deer are having significant ecological impacts. There was a far greater cover of understorey plants and the midstorey was denser and taller inside the exclosures. Outside the exclosures, the vegetation cover was far more sparse and soil erosion was active and extensive. The total number of invertebrates captured in small pitfall traps was nearly twice as many within the exclosures compared to the grazed plots. The dense even‐aged regrowth overstorey stands of White Cypress Pine, inside and outside the exclosures, have changed little in 34 years.  相似文献   

13.
Failure of perennial species to regenerate is a significant threat to semi‐arid woodlands across south‐eastern Australia. High grazing pressure eliminates the recruitment of many perennial species in semi‐arid woodlands, but little is known about requirements for regeneration under low grazing pressure. We tested the effects of addition of water (irrigation to match the largest rainfall events of the last century), seed, soil disturbance and fire within a grazing exclosure in Belah (Casuarina pauper) woodland in the Murray‐Sunset National Park, Victoria. Recruitment was observed in 13 perennial species and was dominated by chenopods. Addition of water, seed and soil disturbance increased abundance of juvenile perennial species above the low‐level background recruitment that occurred in the prevailing drought conditions. This supports the view that continuous recruitment occurs for many semi‐arid perennials. Low seed availability and an inability to maintain soil moisture conditions matching that of regeneration events are likely factors in the lack of recruitment for tree species and limited response of shrubs in this experiment.  相似文献   

14.
Question: Does the introduced pathogen Phytophthora cinnamomi change Banksia woodland α‐ or β‐diversity and what are the implications for species re‐colonization? Location: High rainfall zone of the Southwest Australian Floristic Region (SWAFR). Methods: We measured pathogen‐induced floristic change along a disease chronosequence, and re‐sampled historic quadrats in Banksia attenuata woodlands of the SWAFR. The chronosequence represents three disease stages: (1) healthy vegetation with no disease expression; (2) the active disease front; and (3) diseased vegetation infected for at least 15 years. Comparative data were obtained by resampling diseased plots that were historically disease‐free when established in 1990. Results: β‐diversity differed substantially for both chronosequence and historic data, while α‐diversity was maintained, as measured by plot species richness and Simpson's reciprocal index. Species of known pathogen susceptibility were significantly reduced in cover–abundance, including the structurally dominant species; Banksia attenuata, B. ilicifolia and Allocasuarina fraseriana. Although these species remained present on diseased sites, there were overall reductions in canopy closure, leaf litter and basal area. These declines were coupled with an increase of species with unknown susceptibility, suggesting potential resistance and capacity to take advantage of altered site conditions. Conclusions: This study highlights the ability of an introduced plant pathogen to alter community floristics and associated stand variables. Species cover–abundances are unlikely to recover due to a reduced seed source, altered site conditions and pathogen persistence at the landscape level. However, maintenance of α‐diversity suggests continued biological significance of Phytophthora‐affected sites and the formation of novel ecosystems, themselves worthy of conservation.  相似文献   

15.
The presence of biological soil crusts can affect the germination and survival of vascular plants, but the reasons are not well investigated. We have conducted a field investigation and greenhouse experiments to test the effect of crusts on two desert annual plants, which occur on the stabilized dunes of the Tengger Desert in N China. The results showed that biological soil crusts negatively influenced the seed bank of Eragrostis poaeoides and Bassia dasyphylla. The important effect of biological soil crusts on seed germination and establishment were performed indirectly through reducing the amount of germinating seeds. Field investigation and experimental results with regard to the seed bank indicated that higher seedling density was found in disturbed crust soil and bare soil surface than in intact crust soils. Greenhouse experiments showed that the effects of biological soil crusts on germination and establishment of the two plants are not obvious in moist condition, while disturbed crusts are more favorable to seed germination in dry treatment. Significant differences in biomass were found between disturbed crust soil and bare soil. Survival and growth of the two annual plants were enhanced in both algal and moss crusts during the season of rainfall or in moist environment, but crusts did not affect seedling survival in the dry period. The small seeded E. poaeoides has higher germination than larger-seeded B. dasyphylla in crust soils, but B. dasyphylla has a relatively higher survival rate than E. poaeoides in crust soils.  相似文献   

16.
We tested the effect of cultivation on butterfly (Nymphalidae: Charaxes) and beetle (Coleoptera: Scarabaeidae: Cetoniinae) species richness and abundance along a cultivation intensification gradient. Results showed significant differences in species richness and abundance between natural woodlands and cultivated landscapes with larger differences in areas of high cultivation intensity. The results indicate that natural woodland clearing for cultivation purposes has negative impacts on arthropod diversity, a situation more severe in highly intensified cultivated areas. Our results imply that mosaics of different land‐use units, each in a different phase of clearance‐cultivation‐abandonment‐recovery‐clearance cycle could counter the negative effects of cultivation intensity on arthropod diversity.  相似文献   

17.
Unlike most other green algae, trebouxiophyceans are predominantly aerophytic and contain many symbiotic representatives. In recent years, a number of new terrestrial trebouxiophycean taxa were described from soils, tree bark, and lichens. The present phylogenetic study reveals three new lineages of free‐living trebouxiophyceans found in North American desert soil crusts and proposes new generic names to accommodate them: Desertella, Eremochloris, and Xerochlorella. This survey of desert isolates also led to discovery of representatives of seven existing genera of trebouxiophyceans. Two of these genera have never been reported to contain desert representatives and one was known previously only from aquatic habitats. Furthermore, we expand the known geographic range of the recently described genus Chloropyrula, heretofore only known from the Ural Mountains. We demonstrate that the diversity of trebouxiophyceans is still underestimated and poorly understood, and that most major trebouxiophycean lineages contain desert‐dwelling taxa.  相似文献   

18.
The redistribution of water in semi-arid environments is critical for the maintenance and survival of vegetation patches. We used a systems approach to examine the interactive effects of three engineers—Stipa tenacissima, biological soil crusts, and the European rabbit (Oryctolagus cuniculus)—on infiltration processes in a model gypseous semi-arid Mediterranean grassland. We measured the early (sorptivity) and later (steady-state infiltration) stages of infiltration at two supply potentials using disk permeameters, which allowed us to determine the relative effects of different engineers and soil micropores on water flow through large macropores. We detected few effects under tension when flow was restricted to matrix pores, but under ponding, sorptivity and steady-state infiltration adjacent to Stipa tussocks were 2–3 times higher than in intact or rabbit-disturbed biological soil crusts. Structural Equation Modeling (SEM) showed that both Stipa and biological soil crust cover exerted substantial and equal positive effects on infiltration under ponding, whereas indirectly, rabbit disturbance negatively affected infiltration by reducing crust cover. Under tension, when macropores were prevented from conducting water, Stipa had a direct negative effect and biological soil crust cover was relatively unimportant. More complex SEM models demonstrated that (1) Stipa primarily influenced biological soil crusts by reducing their richness, (2) rabbits exerted a small negative effect on crust richness, and (3) lichens were negatively, and mosses positively, correlated with a derived “infiltration” axis. Our results highlight the importance of biological soil crusts as key players in the maintenance of infiltration processes in Stipa grasslands, and demonstrate the modulating role played by rabbits through their surface disturbances.  相似文献   

19.
Biological soil crusts dominated by lichens are common components of shrub-steppe ecosystems in northwestern US. We conducted growth chamber experiments to investigate the effects of these crusts on seed germination and initial seedling establishment of two annual grasses; the highly invasive exotic Bromus tectorum L. and the native Vulpia microstachys Nutt. We recorded germination time courses on bare soil and two types of biological soil crusts; one composed predominantly of the lichen Diploschistes muscorum (Scop.) R. Sant. (lichen crust) and the other comprised of an assortment of lichens and mosses (mixed crust). Final germination on the lichen crust for both grass species was about a third of that on the bare soil surface. Mean germination time (MGT) was 3–4 days longer on the lichen crust compared with the bare soil. In contrast, there was no difference in germination percentage or MGT between the mixed crust and bare soil, and results were similar for both grass species. For both species, root penetration of germinating seeds on the lichen crust was lower than on the bare soil or mixed crust surfaces. The combined effects of the lichen crust on germination and root penetration resulted in an overall reduction in seedling establishment of 78% for V. microstachys and 85% for B. tectorum relative to the bare soil treatment. Our results clearly demonstrate that lichen-dominated biological soil crust can inhibit germination and root penetration, but the extent of these effects depends on the composition of the crust. Responsible Editor: Tibor Kalapos  相似文献   

20.
The adaptation of plants to particular soil types has long intrigued biologists. Gypsum soils occupy large areas in many regions of the world and host a striking biological diversity, but their vegetation has been much less studied than that developing over serpentine or saline soils. Herein, we review all aspects of plant life on gypsum ecosystems, discuss the main processes driving their structure and functioning, and highlight the main conservation threats that they face. Plant communities in gypsum habitats typically show distinctive bands at very small spatial scales, which are mainly determined by topography. Plants living on gypsum soils can be classified into three categories: (i) wide gypsophiles are specialists that can penetrate the physical soil crust during early life stages and have physiological adjustments to cope with the chemical limitations imposed by gypsum soils; (ii) narrow gypsophiles are refugee plants which successfully deal with the physical soil crust and can tolerate these chemical limitations but do not show specific adaptations for this type of soils; and (iii) gypsovags are non‐specialist gypsum plants that can only thrive in gypsum soils when the physical crust is absent or reduced. Their ability to survive in gypsum soils may also be mediated by below‐ground interactions with soil microorganisms. Gypsophiles and gypsovags show efficient germination at low temperatures, seed and fruit heteromorphism within and among populations, and variation in seed dormancy among plants and populations. In gypsum ecosystems, spatio‐temporal changes in the composition and structure of above‐ground vegetation are closely related to those of the soil seed bank. Biological soil crusts (BSCs) dominated by cyanobacteria, lichens and mosses are conspicuous in gypsum environments worldwide, and are important drivers of ecosystem processes such as carbon and nitrogen cycling, water infiltration and run‐off and soil stability. These organisms are also important determinants of the structure of annual plant communities living on gypsum soils. The short‐distance seed dispersal of gypsophiles is responsible for the high number of very narrow endemisms typically found in gypsum outcrops, and suggests that these species are evolutionarily old taxa due to the time they need to colonize isolated gypsum outcrops by chance. Climate change and habitat fragmentation negatively affect both plants and BSCs in gypsum habitats, and are among the major threats to these ecosystems. Gypsum habitats and specialists offer the chance to advance our knowledge on restrictive soils, and are ideal models not only to test important evolutionary questions such as tolerance to low Ca/Mg proportions in soils, but also to improve the theoretical framework of community ecology and ecosystem functioning.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号