首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
Hsp27 is considered a potential marker for cell differentiation in diverse tissues. Several aspects linked to the differentiation process and to the transition from high to low metastatic potential were analyzed in melanoma cells transfected with Hsp27. E-cadherin plays a central role in cell differentiation, migration, and normal development. Loss of expression or function of E-cadherin has been documented in a variety of human malignancies. We observed by fluorescence-activated cell sorter (FACS) as well as immunofluorescence (IF) analysis a pronounced expression of E-cadherin in Hsp27-transfected A375 melanoma cells compared with control melanoma cells. The expression of the adhesion molecule MUC18/MCAM correlates directly with the metastatic potential of melanoma cells. In contrast to wild-type and neotransfected melanoma cells, in Hsp27-transfected cells the expression of MUC18/MCAM could not be detected by FACS and IF analysis. The plasminogen activator (PA) system plays a central role in mediating extracellular proteolysis and also in nonproteolytic events such as cell adhesion, migration, and transmembrane signaling. Hsp27 transfectants revealed elevated messenger ribonucleic acid expression of the urokinase-type PA (uPA) and its inhibitor, PA inhibitor type 1, which might indicate a neutralization effect of the proteolytic activity of uPA. Control cells failed to express both these molecules. The influence of Hsp27 expression on uPA activity and the involvement of E-cadherin could be demonstrated by use of anti-E-cadherin-blocking antibody. Our data provide evidence for an inhibitory-regulatory role of Hsp27 in tumor progression as found in our system.  相似文献   

7.
8.
9.
This review article has described briefly studies supporting the concept that IL-8 expression and its regulation by inflammatory cytokines like IL-1 may play an important role in controlling the phenotypes associated with melanoma progression and metastasis. It is clear from the experiments presented here that IL-8 is an important autocrine multifunctional cytokine that modulates melanoma/cell proliferation, migration by induction of extracellular matrix degradation enzymes and induces neovascularization, all of which are critical for melanoma growth and metastasis. In addition, their expression in melanoma tumor specimens suggests an association between IL-8 expression and tumor aggressiveness. Further, inflammatory cytokines produced by either tumor cells or stromal cells may regulate IL-8 expression, which can control melanoma growth and enhance our current knowledge regarding melanoma progression and metastasis. Understanding these events and their significance will allow us to design novel therapeutic approaches for treatment of melanoma.  相似文献   

10.
11.
Interleukin‐8 (IL‐8), as an inflammatory chemokine, has been previously shown to contribute to tumorigenesis in several malignancies including the ovarian cancer. However, little is known about how IL‐8 promotes the metastasis and invasion of ovarian cancers cells. In this study, we found that IL‐8 and its receptors CXCR1 and CXCR2 were up‐regulated in advanced ovarian serous cancer tissues. Furthermore, the level of IL‐8 and its receptors CXCR1 and CXCR2 expression were associated with ovarian cancer stage, grade and lymph node metastasis. In vitro, IL‐8 promoted ovarian cancer cell migration, initiated the epithelial‐mesenchymal transition (EMT) program and activated Wnt/β‐catenin signalling. However, when treated with Reparixin (inhibitor of both IL‐8 receptors CXCR1 and CXCR2), effect of both endogenous and exogenous IL‐8 was reversed. Together, our results indicated that IL‐8 triggered ovarian cancer cells migration partly through Wnt/β‐catenin pathway mediated EMT, and IL‐8 may be an important molecule in the invasion and metastasis of ovarian cancer.  相似文献   

12.
Brain metastases are a common feature of malignant melanoma and are associated with poor prognosis. Melanotransferrin (MTf), one of several antigens associated with the surface of melanoma cells, has been demonstrated to promote cell invasion. In this study, we investigated the role of membrane‐bound MTf in several of the steps leading to the development of melanoma brain metastasis. Our results indicated that MTf‐positive cells were detected in the brains of nude mice injected intravenously with human melanoma SK‐Mel 28 cells. Moreover, administration of a single dose of a monoclonal antibody (L235) directed against human MTf significantly reduced the development of human melanoma brain metastases in nude mice. The ability of melanoma cells to cross the blood–brain barrier (BBB) in vitro is correlated with their MTf expression levels at the cell surface. Overall, our results indicated that membrane‐bound MTf is a key element in melanoma cell transmigration across the BBB and subsequent brain metastasis. Thus, these data suggest MTf as an attractive target and demonstrate the therapeutic potential of an anti‐MTf mAb for preventing metastatic melanoma.  相似文献   

13.
14.
15.
The tetraspan protein KAI1 (CD82) has been previously shown to have important roles in cell migration, invasion, and melanoma prognosis. In this study, we investigated the role of KAI1 regarding melanoma angiogenesis. KAI1 overexpression strongly suppressed the growth of the human umbilical vein endothelial cells and their tubular structure formation in vitro. Also, KAI1 was able to inhibit both interleukin‐6 (IL‐6) and VEGF at mRNA and protein levels. Using nude mice in the in vivo study, we showed that KAI1, through the regulation of ING4, inhibited blood vessel formation in matrigel plugs along with the downregulation of IL‐6 and VEGF, and the recruitment of CD31‐positive cells. Finally, we found that KAI1 was able to suppress the activity of a serine/threonine kinase Akt by suppressing Akt phosphorylation (Ser473). Taken together, our results suggested that KAI1 was able to suppress melanoma angiogenesis by downregulating IL‐6 and VEGF expression, and the restoration of KAI1 functionality offered a new approach in human melanoma treatment.  相似文献   

16.
MUC4, a transmembrane mucin, is aberrantly expressed in pancreatic adenocarcinomas while remaining undetectable in the normal pancreas. Recent studies have shown that the expression of MUC4 is associated with the progression of pancreatic cancer and is inversely correlated with the prognosis of pancreatic cancer patients. In the present study, we have examined the phenotypic and molecular consequences of MUC4 silencing with an aim of establishing the mechanistic basis for its observed role in the pathogenesis of pancreatic cancer. The silencing of MUC4 expression was achieved by stable expression of a MUC4-specific short hairpin RNA in CD18/HPAF, a highly metastatic pancreatic adenocarcinoma cell line. A significant decrease in MUC4 expression was detected in MUC4-knockdown (CD18/HPAF-siMUC4) cells compared with the parental and scrambled short interfering RNA-transfected (CD18/HPAF-Scr) control cells by immunoblot analysis and immunofluorescence confocal microscopy. Consistent with our previous observation, inhibition of MUC4 expression restrained the pancreatic tumor cell growth and metastasis as shown in an orthotopic mouse model. Our in vitro studies revealed that MUC4-associated increase in tumor cell growth resulted from both the enhanced proliferation and reduced cell death. Furthermore, MUC4 expression was also associated with significantly increased invasiveness (P < or = 0.05) and changes in actin organization. The presence of MUC4 on the cell surface was shown to interfere with the tumor cell-extracellular matrix interactions, in part, by inhibiting the integrin-mediated cell adhesion. An altered expression of growth- and metastasis-associated genes (LI-cadherin, CEACAM6, RAC1, AnnexinA1, thrombomodulin, epiregulin, S100A4, TP53, TP53BP, caspase-2, caspase-3, caspase-7, plakoglobin, and neuregulin-2) was also observed as a consequence of the silencing of MUC4. In conclusion, our study provides experimental evidence that supports the functional significance of MUC4 in pancreatic cancer progression and indicates a novel role for MUC4 in cancer cell signaling.  相似文献   

17.
Melanoma is the most aggressive type of cutaneous tumor and the occurrence of metastasis makes it resistant to almost all available treatment and becomes incorrigible. Hence, identifying metastasis‐related biomarkers and effective therapeutic targets will assist in preventing metastasis and ameliorating cutaneous melanoma. In our present study, we reported kinesin family member 18B (KIF18B) as a novel contributor in cutaneous melanoma proliferation and metastasis, and it was found to be of great significance in predicting the prognosis of cutaneous melanoma patients. Bioinformatics analysis based on ONCOMINE, The Cancer Genome Atlas, and Genotype‐Tissue Expression database revealed that KIF18B was highly expressed in cutaneous melanoma and remarkably correlated with unfavorable clinical outcomes. Consistently, the results of the quantitative real‐time polymerase chain reaction exhibited that the expression of KIF18B was significantly higher in cutaneous melanoma cell lines than that in normal cells. In vitro, biological assays found that knockdown of KIF18B in cutaneous melanoma cells noticeably repressed cell proliferation, migration, and invasion, while inducing cell apoptosis. Moreover, the protein expression of E‐cadherin was enhanced while the expression of N‐cadherin, vimentin, and Snail was decreased in M14 cells after knocking down KIF18B. In addition, the phosphorylation of phosphoinositide 3‐kinase (PI3K) and extracellular‐signal‐regulated kinase (ERK) was significantly suppressed in M14 cells with silenced KIF18B. Above all, our results indicated that the repression of cutaneous melanoma cell migration and proliferation caused by KIF18B depletion suggested an oncogenic role of KIF18B in cutaneous melanoma, which acts through modulating epithelial‐mesenchymal transition and ERK/PI3K pathway.  相似文献   

18.
We investigated the importance of the insulin‐like growth factor‐1 receptor (IGF‐1R) in hepatic metastases of uveal melanoma. The expression pattern of IGF‐1R in archival tissue samples of hepatic metastasis from 24 patients was analyzed by immunohistochemistry. All the samples of hepatic metastases stained positive for IGF‐1R. To investigate the biological role of IGF‐1R on the growth of metastatic uveal melanoma, a long‐term cell line obtained from a hepatic metastasis (TJU‐UM001) was evaluated. TJU‐UM001 expressed cell surface IGF‐1R (>90%) and proliferated in response to exogenous and endogenous insulin‐like growth factor‐1 (IGF‐1). Correlatively, anti‐IGF‐1R antibody completely blocked IGF‐1‐induced growth of TJU‐UM001 cells. IGF‐1 preferentially induced phosphorylation of Akt (S473) in quiescent TJU‐UM001 cells, and this was blocked by anti‐IGF‐1R antibody. This study suggests that autocrine and paracrine mechanisms underlie IGF‐1‐induced growth of metastatic uveal melanoma and underscore the potential benefit of IGF‐1 or IGF‐1R antagonism in treatment for metastatic uveal melanoma.  相似文献   

19.
Epigenetic agents such as bromodomain and extra‐terminal region inhibitors (BETi) slow tumor growth via tumor intrinsic alterations; however, their effects on antitumor immunity remain unclear. A recent advance is the development of next‐generation BETi that are potent and display a favorable half‐life. Here, we tested the BETi, PLX51107, for immune‐based effects on tumor growth in BRAF V600E melanoma syngeneic models. PLX51107 delayed melanoma tumor growth and increased activated, proliferating, and functional CD8+ T cells in tumors leading to CD8+ T‐cell‐mediated tumor growth delay. PLX51107 decreased Cox2 expression, increased dendritic cells, and lowered PD‐L1, FasL, and IDO‐1 expression in the tumor microenvironment. Importantly, PLX51107 delayed the growth of tumors that progressed on anti‐PD‐1 therapy; a response associated with decreased Cox2 levels, decreased PD‐L1 expression on non‐immune cells, and increased intratumoral CD8+ T cells. Thus, next‐generation BETi represent a potential first‐line and secondary treatment strategy for metastatic melanoma by eliciting effects, at least in part, on antitumor CD8+ T cells.  相似文献   

20.
Ganglioside GD3 is specifically expressed in human melanomas, and plays a role in the enhancement of malignant phenotypes of melanoma cells. To analyze the mechanisms by which GD3 enhances malignant properties and signals in melanomas, it is essential to clarify how GD3 interacts with membrane molecules on the cell membrane. In this study, we performed proteomics analysis of glycolipid‐enriched microdomains (GEM) with current sucrose density gradient ultracentrifugation of Triton X‐100 extracts and MS. We also examined GD3‐associated molecules using enzyme‐mediated activation of radical sources (EMARS) reaction combined with MS. Comparison of molecules identified as residents in GEM/rafts and those detected by EMARS reaction using an anti‐GD3 antibody revealed that a relatively low number of molecules is recruited around GD3, while a number of membrane and secreted molecules was defined in GEM/rafts. These results suggested that EMARS reaction is useful to identify actually interacting molecules with gangliosides such as GD3 on the cell membrane, and many other microdomains than GD3‐associating rafts exist. Representative examples of GD3‐associated molecules such as neogenin and MCAM were shown.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号