首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The type of pigment synthesized in mammalian hair, yellow–red pheomelanin or black–brown eumelanin, depends on the interaction between Agouti protein and the Melanocortin 1 receptor. Although the genetics of pigmentation is broadly conserved across most mammalian species, pigment type-switching in domestic dogs is unusual because a yellow–tan coat with variable amounts of dark hair is thought to be caused by an allele of the Agouti locus referred to as fawn or sable (ay). In a large survey covering thirty seven breeds, we identified an Agouti allele with two missense alterations, A82S and R83H, which was present (heterozygous or homozygous) in 41 dogs (22 breeds) with a fawn or sable coat, but was absent from 16 dogs (8 breeds) with a black-and-tan or tricolor phenotype. In an additional 33 dogs (14 breeds) with a eumelanic coat, 8 (German Shepherd Dogs, Groenendaels, Schipperkes, or Shetland Sheepdogs) were homozygous for a previously reported mutation, non-agouti R96C; the remainder are likely to have carried dominant black, which is independent of and epistatic to Agouti. This work resolves some of the complexity in dog coat color genetics and provides diagnostic opportunities and practical guidelines for breeders.  相似文献   

3.
The interaction between two genes, Agouti and Melanocortin-1 receptor (Mc1r), produces diverse pigment patterns in mammals by regulating the type, amount, and distribution pattern of the two pigment types found in mammalian hair: eumelanin (brown/black) and pheomelanin (yellow/red). In domestic dogs (Canis familiaris), there is a tremendous variation in coat color patterns between and within breeds; however, previous studies suggest that the molecular genetics of pigment-type switching in dogs may differ from that of other mammals. Here we report the identification and characterization of the Agouti gene from domestic dogs, predicted to encode a 131-amino-acid secreted protein 98% identical to the fox homolog, and which maps to chromosome CFA24 in a region of conserved linkage. Comparative analysis of the Doberman Pinscher Agouti cDNA, the fox cDNA, and 180 kb of Doberman Pinscher genomic DNA suggests that, as with laboratory mice, different pigment-type-switching patterns in the canine family are controlled by alternative usage of different promoters and untranslated first exons. A small survey of Labrador Retrievers, Greyhounds, Australian Shepherds, and German Shepherd Dogs did not uncover any polymorphisms, but we identified a single nucleotide variant in black German Shepherd Dogs predicted to cause an Arg-to-Cys substitution at codon 96, which is likely to account for recessive inheritance of a uniform black coat.Genbank accession numbers are AC092250 (bacterial artificial chromosome clone RP81-20712) and AY714374 (Doberman Pinscher Agouti cDNA).  相似文献   

4.
In the course of a reverse genetic screen in the Belgian Blue cattle breed, we uncovered a 10‐bp deletion (c.87_96del) in the first coding exon of the melanophilin gene (MLPH), which introduces a premature stop codon (p.Glu32Aspfs*1) in the same exon, truncating 94% of the protein. Recessive damaging mutations in the MLPH gene are well known to cause skin, hair, coat or plumage color dilution phenotypes in numerous species, including human, mice, dog, cat, mink, rabbit, chicken and quail. Large‐scale array genotyping undertaken to identify p.Glu32Aspfs*1 homozygous mutant animals revealed a mutation frequency of 5% in the breed and allowed for the identification of 10 homozygous mutants. As expression of a colored coat requires at least one wild‐type allele at the co‐dominant Roan locus encoded by the KIT ligand gene (KITLG), homozygous mutants for p.Ala227Asp corresponding with the missense mutation were excluded. The six remaining colored calves displayed a distinctive dilution phenotype as anticipated. This new coat color was named ‘cool gray’. It is the first damaging mutation in the MLPH gene described in cattle and extends the already long list of species with diluted color due to recessive mutations in MLPH and broadens the color palette of gray in this breed.  相似文献   

5.
The effects of dominant allele A r of locus Agoution the morphology of hair pigmentation were described in foxes. The A r allele was shown to determine the type of melanin and its content in hair with no effect on the morphology of pigment granules and their distribution throughout a hair. Using the method of electron spin resonance (ESR), the types of melanin (eumelanin and pheomelanin) and their content in the hair of red (A r A r EE) and silver (aaEE) foxes and their hybrids (A r aEE) were determined. In silver foxes, only one type of melanin (eumelanin) was found. In red foxes and their hybrids (which are phenotypically similar but darker than red foxes), both types of melanin (eu- and pheomelanin) were found. The highest melanin content was detected in the coat of silver foxes. In the hybrids, the total melanin content was lower than in silver foxes, but significantly higher than in red foxes. In red foxes, the contribution of pheomelanin to the total hair melanin content was twice as large as in the hybrids.  相似文献   

6.
The seven transmembrane domain melanocortin-1 receptor (Mc1r) encoded by the coat color extension gene (E) plays a key role in the signaling pathway of melanin synthesis. Upon the binding of agonist (melanocortin hormone, α-MSH) or antagonist (Agouti protein) ligands, the melanosomal synthesis of eumelanin and/or phaeomelanin pigments is stimulated or inhibited, respectively. Different alleles of the extension gene were cloned from unrelated animals belonging to French cattle breeds and sequenced. The wild type E allele was mainly present in Normande cattle, the dominant ED allele in animals with black color (i.e. Holstein), whereas the recessive e allele was identified in homozygous animals exhibiting a more or less strong red coat color (Blonde d''Aquitaine, Charolaise, Limousine and Salers). A new allele, named E1, was found in either homozygous (E1/E1) or heterozygous (E1/E) individuals in Aubrac and Gasconne breeds. This allele displayed a 4 amino acid duplication (12 nucleotides) located within the third cytoplasmic loop of the receptor, a region known to interact with G proteins. A first genotyping assay of the main French cattle breeds is described based on these four extension alleles.  相似文献   

7.
8.
The melanocyte-stimulating hormone (MSH) receptor has a major function in the regulation of black (eumelanin) versus red (phaeomelanin) pigment synthesis within melanocytes. We report three alleles of the MSH-receptor gene found in cattle. A point mutation in the dominant allele E D gives black coat color, whereas a frameshift mutation, producing a prematurely terminated receptor, in homozygous e/e animals, produces red coat color. The wild-type allele E + produces a variety of colors, reflecting the possibilities for regulating the normal receptor. Microsatellite analysis, RFLP studies, and coat color information were used to localize the MSH-receptor to bovine Chromosome (Chr) 18.  相似文献   

9.
Melanocortin‐1 receptor (MC1R) and its ligands, α‐melanocyte stimulating hormone (αMSH) and agouti signaling protein (ASIP), regulate switching between eumelanin and pheomelanin synthesis in melanocytes. Here we investigated biological effects and signaling pathways of ASIP. Melan‐a non agouti (a/a) mouse melanocytes produce mainly eumelanin, but ASIP combined with phenylthiourea and extra cysteine could induce over 200‐fold increases in the pheomelanin to eumelanin ratio, and a tan‐yellow color in pelletted cells. Moreover, ASIP‐treated cells showed reduced proliferation and a melanoblast‐like appearance, seen also in melanocyte lines from yellow (Ay/a and Mc1re/ Mc1re) mice. However ASIP‐YY, a C‐terminal fragment of ASIP, induced neither biological nor pigmentary changes. As, like ASIP, ASIP‐YY inhibited the cAMP rise induced by αMSH analog NDP‐MSH, and reduced cAMP level without added MSH, the morphological changes and depigmentation seemed independent of cAMP signaling. Melanocytes genetically null for ASIP mediators attractin or mahogunin (Atrnmg‐3J/mg‐3J or Mgrn1md‐nc/md‐nc) also responded to both ASIP and ASIP‐YY in cAMP level, while only ASIP altered their proliferation and (in part) shape. Thus, ASIP–MC1R signaling includes a cAMP‐independent pathway through attractin and mahogunin, while the known cAMP‐dependent component requires neither attractin nor mahogunin.  相似文献   

10.
ABSTRACT

Pleiotropic effects of melanocortin signaling were first described nearly 100 years ago when mice carrying the lethal yellow (Ay) allele of the Agouti coat color gene were recognized to develop increased growth and adiposity. Work from our laboratory and others over the last several years has demonstrated that the non-pigmentary effects of A?y are caused by ectopic expression of Agouti protein, a paracrine signaling molecule whose normal function is to inhibit signaling through the melanocortin 1 receptor (Mc1r), but which can mimic the effects of Agouti-related protein (Agrp), a homologous neuropeptide produced in the medial portion of the arcuate nucleus that acts as a potent antagonist of the Mc3r and Mc4r. Recently we have used the genetics of pigmentation as an in vivo screening system to analyze other mutations in the Agouti–melanocortin pathway, leading to the identification of Attractin (Atrn), a widely expressed type I transmembrane protein that serves as an accessory receptor for Agouti protein. Surprisingly, homologs of Atrn are found in fruitflies and nematodes, even though Agouti and/or Agouti-related protein are found only in vertebrates. Insight into this apparent paradox now comes from studies of different Atrn alleles, in which we find hyperactivity, abnormal myelination, and widespread CNS vacuolation. We suggest that the neurodegenerative phenotype reflects the ancestral function of Atrn to facilitate and/or maintain cell–cell interactions in the nervous system. Expression in neurectodermal cells during vertebrate evolution may have allowed Atrn to be recruited by the Agouti–melanocortin system to control coat color.  相似文献   

11.
Coat color in Holstein dairy cattle is primarily controlled by the melanocortin 1 receptor (MC1R) gene, a central determinant of black (eumelanin) vs. red/brown pheomelanin synthesis across animal species. The major MC1R alleles in Holsteins are Dominant Black (MC1RD) and Recessive Red (MC1Re). A novel form of dominant red coat color was first observed in an animal born in 1980. The mutation underlying this phenotype was named Dominant Red and is epistatic to the constitutively activated MC1RD. Here we show that a missense mutation in the coatomer protein complex, subunit alpha (COPA), a gene with previously no known role in pigmentation synthesis, is completely associated with Dominant Red in Holstein dairy cattle. The mutation results in an arginine to cysteine substitution at an amino acid residue completely conserved across eukaryotes. Despite this high level of conservation we show that both heterozygotes and homozygotes are healthy and viable. Analysis of hair pigment composition shows that the Dominant Red phenotype is similar to the MC1R Recessive Red phenotype, although less effective at reducing eumelanin synthesis. RNA-seq data similarly show that Dominant Red animals achieve predominantly pheomelanin synthesis by downregulating genes normally required for eumelanin synthesis. COPA is a component of the coat protein I seven subunit complex that is involved with retrograde and cis-Golgi intracellular coated vesicle transport of both protein and RNA cargo. This suggests that Dominant Red may be caused by aberrant MC1R protein or mRNA trafficking within the highly compartmentalized melanocyte, mimicking the effect of the Recessive Red loss of function MC1R allele.  相似文献   

12.
Melanocyte stimulating hormone receptor (MC1R) has been known as a regulator of eumelanin and phaeomelanin production in the melanocytes, and MC1R mutations causing coat color changes are known in many vertebrates; however, there are no research reports about the differentially expression of MC1R gene and its coding protein in Cashmere goats with different coat color. We examined the presence of MC1R distribution and MC1R protein and gene expression in the white Cashmere goats and black Cashmere goats, respectively; q-PCR, Western blot and immunhistochemical analysis showed that the expression of the MC1R gene in the black Cashmere goats was 3.39 fold more than the white ones (p?<?0.01), and Cashmere goats with black genotype had significantly higher (2.03, p?<?0.01) MC1R protein expression than white genotype in the all investigated samples. Moreover, all Cashmere goats with different coat color available for immunhistochemical analysis showed either lower (white Cashmere goats) or higher (black Cashmere goats) expression of the MC1R protein; these findings suggested that it had a relationship between the MC1R and the coat color of Cashmere goats. That could lay the foundation for the further research of the MC1R and coat color controllability regulation of the Cashmere goats.  相似文献   

13.
Domestic yaks (Bos grunniens) exhibit two major coat color variations: a brown vs. wild‐type black pigmentation and a white spotting vs. wild‐type solid color pattern. The genetic basis for these variations in color and distribution remains largely unknown and may be complicated by a breeding history involving hybridization between yaks and cattle. Here, we investigated 92 domestic yaks from China using a candidate gene approach. Sequence variations in MC1R, PMEL and TYRP1 were surveyed in brown yaks; TYRP1 was unassociated with the coloration and excluded. Recessive mutations from MC1R, or p.Gln34*, p.Met73Leu and possibly p.Arg142Pro, are reported in bovids for the first time and accounted for approximately 40% of the brown yaks in this study. The remaining 60% of brown individuals correlated with a cattle‐derived deletion mutation from PMEL (p.Leu18del) in a dominant manner. Degrees of white spotting found in yaks vary from color sidedness and white face, to completely white. After examining the candidate gene KIT, we suggest that color‐sided and all‐white yaks are caused by the serial translations of KIT (Cs6 or Cs29) as reported for cattle. The white‐faced phenotype in yaks is associated with the KIT haplotype Swf. All KIT mutations underlying the serial phenotypes of white spotting in yaks are identical to those in cattle, indicating that cattle are the likely source of white spotting in yaks. Our results reveal the complex genetic origins of domestic yak coat color as either native in yaks through evolution and domestication or as introduced from cattle through interspecific hybridization.  相似文献   

14.
A dataset consisting of 787 animals with high‐density SNP chip genotypes (346 774 SNPs) and 939 animals with medium‐density SNP chip genotypes (33 828 SNPs) from eight indigenous Swiss sheep breeds was analyzed to characterize population structure, quantify genomic inbreeding based on runs of homozygosity and identify selection signatures. In concordance with the recent known history of these breeds, the highest genetic diversity was observed in Engadine Red sheep and the lowest in Valais Blacknose sheep. Correlation between FPED and FROH was around 0.50 and thereby lower than that found in similar studies in cattle. Mean FROH estimates from medium‐density data and HD data were highly correlated (0.95). Signatures of selection and candidate gene analysis revealed that the most prominent signatures of selection were found in the proximity of genes associated with body size (NCAPG, LCORL, LAP3, SPP1, PLAG1, ALOX12, TP53), litter size (SPP1), milk production (ABCG2, SPP1), coat color (KIT, ASIP, TBX3) and horn status (RXFP2). For the Valais Blacknose sheep, the private signatures in proximity of genes/QTL influencing body size, coat color and fatty acid composition were confirmed based on runs of homozygosity analysis. These private signatures underline the genetic uniqueness of the Valais Blacknose sheep breed. In conclusion, we identified differences in the genetic make‐up of Swiss sheep breeds, and we present relevant candidate genes responsible for breed differentiation in locally adapted breeds.  相似文献   

15.
16.
Variations in vertebrate skin and hair color are due to varied amounts of eumelanin (brown/black) and phaeomelanin (red/yellow) produced by the melanocytes. The melanocortin 1 receptor (MC1R) is a regulator of eumelanin and phaeomelanin production in the melanocytes, and MC1R mutations causing coat color changes are known in many vertebrates. We have sequenced the entire coding region of the MC1R gene in Black-boned, Nanping indigenous and Romney Marsh sheep populations and found two silent mutation sites of A12G and G144C, respectively. PCR-RFLP of G144C showed that frequency of allele G in Black-boned, Nanping indigenous and Romney Marsh sheep was 0.818, 0.894 and 0, respectively. Sheep with GG genotype had significantly higher (P < 0.05) tyrosinase activity than sheep with CC genotype in the all investigated samples. Moreover, there was significant effect of MC1R genotype on coat color, suggesting that MC1R gene could affect coat color but not black traits. There would be merit in further studies using molecular techniques to elucidate the cause of black traits in these Black-boned sheep.  相似文献   

17.
Genomic regions associated with coat color and pigmented areas of the head were identified for Fleckvieh (dual‐purpose Simmental), a red‐spotted and white‐headed cattle breed. Coat color was measured with a chromameter, implementing the CIELAB color space and resulting in numerical representation of lightness, color intensity, red/green and blue/yellow color components, rather than subjective classification. Single marker regression analyses with fixed effects of the sex and barn were applied, and significant regions were determined with the local false discovery rate methodology. The PMEL and ERBB3 genes on chromosome 5 were in the most significant region for the color measurements. In addition to the blue/yellow color component and color intensity, the AP3B2 gene on chromosome 21 was identified. Its function was confirmed for similar traits in a range of model species. The KIT gene on chromosome 6 was found to be strongly associated with the inhibition of circum‐ocular pigmentation and pigmented spots on the cheek.  相似文献   

18.
Pigmentation genes such as TYR (tyrosinase), TYRP1 (tyrosinase-related protein 1), DCT (previously TYRP2, or tyrosinase-related protein 2), ASIP (agouti) and MC1R (melanocortin receptor 1) play a major role in cattle coat colour. To understand the genotypic profile underlying coat colour in native Korean Hanwoo cattle and Angus black cattle, portions of the above-mentioned genes were amplified. Sequence analysis revealed variation in the TYRP1 (exon 5) and MC1R genes. Restriction enzyme analysis of these two genes could distinguish between different colours of Hanwoo cattle. Quantitative estimates of melanin and eumelanin in hair from three different-coloured Hanwoo phenotypes and Angus black showed significant differences at the breed and phenotypic levels. Finally, sequence variants in MC1R were associated with total melanin and eumelanin in breeds as well as in Hanwoo phenotypes.  相似文献   

19.
Pigmentary function and evolution of tyrp1 gene duplicates in fish   总被引:1,自引:0,他引:1  
The function of the tyrosinase‐related protein 1 (Tyrp1) has not yet been investigated in vertebrates basal to tetrapods. Teleost fishes have two duplicates of the tyrp1 gene. Here, we show that the teleost tyrp1 duplicates have distributed the ancestral gene expression in the retinal pigment epithelium (RPE) and melanophores in a species‐specific manner. In medaka embryos, tyrp1a expression is found in the RPE and in melanophores while tyrp1b is only expressed in melanophores. In zebrafish embryos, expression of tyrp1 paralogs overlaps in the RPE and in melanophores. Knockdown of each zebrafish tyrp1 duplicate alone does not show pigmentary defects, but simultaneous knockdown of both tyrp1 genes results in the formation of brown instead of black eumelanin accompanied by severe melanosome defects. Our study suggests that the brown melanosome color in Tyrp1‐deficient vertebrates is an effect of altered eumelanin synthesis. Black eumelanin formation essentially relies on the presence of Tyrp1 and some of its function is most likely conserved from the common ancestor of bony vertebrates.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号