首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Finta C  Zaphiropoulos PG 《Genomics》2000,63(3):433-438
In human there are four known CYP2C genes that have been mapped to chromosome 10q24 with the order Cen-2C18-2C19-2C9-2C8-Tel. Previously we have shown that splicing events joining exons from the neighboring 2C18 and 2C19 genes occur in human liver and epidermis. Here evidence is presented that the terminal genes of this cluster, 2C18 and 2C8, are also involved in intergenic splicing. Most interestingly, several of these 2C18/2C8 RNAs were composed of all nine exons, thus conceivably having the potential for coding functional proteins. Moreover, chimeric RNA species consisting of exons originating not only from the CYP2C8 and CYP2C18 genes, but also from the CYP2C19 gene were detected. In all cases the exons from the different CYP2C genes were joined at the correct canonical splice sites. However, the closely linked RBP4 gene is not participating in intergenic splicing with the CYP2C genes. In addition, CYP2C8 gene expression was found to generate a variety of scrambled RNA molecules including species that contained repetitions of certain exons.  相似文献   

2.
3.
The cytochrome P450 2C (CYP2C) gene locus was found to includea novel exon 1 sequence with high similarity to the canonicalexon 1 of CYP2C18. Rapid amplification of cDNA ends (RACE) andPCR amplifications of human liver cDNA revealed the presenceof several intergenic species containing the CYP2C18 exon 1–likesequence spliced to different combinations of exonic and intronicsequences from the CYP2C9 gene. One splice variant was foundto have an open reading frame starting at the canonical translationinitiation codon of the CYP2C18 exon 1–like sequence.Another variant consisted of the nine typical CYP2C9 exons splicedafter the CYP2C18 exon 1–like sequence through a segmentof CYP2C9 5' flanking sequences. Moreover, analysis of bacterialartificial chromosome (BAC) clones revealed that the CYP2C18exon 1–like sequence was located in the intergenic regionbetween the CYP2C19 and CYP2C9 genes. The finding that a solitaryexon is spliced with sequences from a neighboring gene may beinterpreted as representing a general evolutionary mechanismaimed at using the full expression potential of a cell's genomicinformational content.  相似文献   

4.
We have previously reported concerning the existence of a third type of human α-amylase gene, AMY3 [Emi et al., Gene 62 (1988) 229–235; Tomita et al., Gene 76 (1989) 11–18], which is expressed in a lung carcinoid tissue, and differs in nucleotide sequence from the two previously characterized human α-amylase genes coding for salivary and pancreatic isozymes, termed AMY1 and AMY2, respectively.Here, we rename this gene AMY2B to coincide with the designation by Gumucio et al. [Mol. Cell Biol. 8 (1988) 1197–1205] and describe its genetic properties as revealed by sequencing studies. It consists of ten major exons whose sequences are highly homologous to those of AMY1 and AMY2. Not only the exons, but also most of the introns seem to be highly conserved, as judged from physical mapping data. The AMY2B gene identified from mRNA in a lung carcinoid tissue has at least two additional untranslated exons in its 5′ region; hence the promoter lies far upstream relative to the other two AMY genes.  相似文献   

5.
6.
7.
A 4,100-base pair (bp) region of the chloroplast genome, amplified via the polymerase chain reaction, was obtained from 14 species of the genus Astragalus and mapped with 23 restriction enzymes. The amplified region encompassed the chloroplast genes RNA polymerase Cl (rpoCl; 90.8% of the gene) and RNA polymerase C2 (rpoC2; 32.7% of the gene) including the intron in rpoC1 and the intergenic spacer between the two genes. Approximately 144 sites (615 bp) were identified; 37 restriction site mutations and one 10-bp length mutation were detected. Estimated interspecific sequence divergence values ranged from 0.00% to 3.92%. Phylogenetic analysis with Wagner and Dollo parsimony both resulted in a single 41-step tree with a consistency index of 0.951. The relative positions of 115 restriction sites were mapped. The insertion and ten of the restriction site mutations mapped to the intron in rpoC1, 18 site mutations mapped to the rpoC1 exons, three site mutations mapped to rpoC2, three site changes mapped to the intergenic spacer, and four site changes were not mapped. This study demonstrates the utility of restriction site analysis of PCR-amplified chloroplast DNA to the study of plant phylogenetic relationships and molecular evolution.  相似文献   

8.
9.
A group of human cytochrome P450 genes encompassing the CYP2A, CYP2B, and CYP2F subfamilies were cloned and assembled into a 350-kb contig localized on the long arm of chromosome 19. Three complete CYP2A genes—CYP2A6, CYP2A7, and CYP2A13—plus two pseudogenes truncated after exon 5, were identified and sequenced. A variant CYP2A6 allele that differed from the corresponding CYP2A6 and CYP2A7 cDNAs previously sequenced was found and was designated CYP2A6ν2. Sequence differences in the CYP2A6ν2 gene are restricted to regions encompassing exons 3, 6, and 8, which bear sequence relatedness with the corresponding exons of the CYP2A7 gene, located downstream and centromeric of CYP2A6ν2, suggesting recent gene-conversion events. The sequencing of all the CYP2A genes allowed the design of a PCR diagnostic test for the normal CYP2A6 allele, the CYP2A6ν2 allele, and a variant—designated CYP2A6ν1—that encodes an enzyme with a single inactivating amino acid change. These variant alleles were found in individuals who were deficient in their ability to metabolize the CYP2A6 probe drug coumarin. The allelic frequencies of CYP2A6ν1 and CYP2A6ν2 differed significantly between Caucasian, Asian, and African-American populations. These studies establish the existence of a new cytochrome P450 genetic polymorphism.  相似文献   

10.
Summary The intergenic spacer of a rice ribosomal RNA gene repeating unit has been completely sequenced. The spacer contains three imperfect, direct repeated regions of 264–253 bp, followed by a related but more highly divergent region. Detailed analysis of the sequence allows the presentation of an evolutionary scenario in which the 264–253-bp repeats are derived from an ancestral 150-bp sequence by deletion and amplification. Comparison of the rice sequence with those of maize, wheat, and rye shows that, despite considerable divergence from the ancestral sequence, several regions have been highly conserved, suggesting that they may play an important role in the structure and/or expression of the ribosomal genes.Abbreviations IGS ribosomal gene intergenic spacer - rDNA ribosomal DNA - rRNA ribosomal RNA Offprint requests to: M. Delseny  相似文献   

11.
This study investigates associations between gene expressions of aromatase (CYP19), 17α hydroxylase (CYP17), and estrogen receptors α and β and anthropometric measurements in offspring of the Michigan fish eater cohort. Leg and trunk length, height, weight, and BMI and gene expression in peripheral blood cells were measured in offspring of the Michigan fish eater cohort. The parental generation was followed between 1973 and 1991, and maternal age, height, and weight data were collected. Female offspring were contacted in 2001/2002 and followed up in 2006/2007; offspring information included age, education, reproductive history, smoking, and exercise. Gene expression was standardized against 18S ribosomal ribonucleic acid (18SrRNA) and RNA polymerase II (RNA PolII) expressions. Mixed models assessed the statistical effect of gene expression on anthropometric outcomes, accounting for multiple offspring from one mother. Anthropometric measurements and gene expression were measured in 139 female offspring. The two length and the height measurements were correlated, as were BMI and weight. CYP19 expression was correlated with the other gene expressions and both estrogen receptor expressions were associated. For every 1 unit of ΔCt (18SrRNACYP19) or ΔCt (RNA PolIICYP19), BMI was increased by 0.9 (P = 0.03) and 0.87 kg/m2 (P = 0.04), respectively, and weight by 2.35 kg (P = 0.03) and 2.1 kg (P = 0.03), respectively. For every 1 unit of ΔCt (18SrRNACYP17), leg length was increased by 0.84 cm (P = 0.04). The results suggest that CYP17 gene expression may influence growth during childhood and adolescence while CYP19 may be associated with the concurrent measures of weight and BMI.  相似文献   

12.
13.
The plastid ribisomal RNA (rRNA) operon of the achlorophyllous root parasite Conopholis americana was completely sequenced. Full-length rRNA genes are retained in the gene cluster, but significant divergence has occurred in the 16S, 23S and 5S genes. Both the 16S–23S intergenic spacer and the 4.5S–5S intergenic spacer have suffered substantial deletions, including the two tRNA genes typically found in prokaryotic and plastid 16S–23S spacers.  相似文献   

14.
A well-characterized primary rat hepatocyte culture system was used to examine induction patterns of cytochrome 450 gene expression by a series of 4-n -alkyl-methylenedioxybenzene (MDBs) derivatives. Hepatocytes were treated for 24, 48, or 72 hours with 0–500 μ M of the MDB compounds, and total cellular RNA and protein from each treatment was evaluated by hybridization and immunochemical techniques. Exposure to MDB congeners possessing increasing 4-n -alkyl side-chain length (C0–C8) resulted in dose- and structure-dependent activation of CYP2B1, 2B2, 3A1, 1A1, and 1A2 gene expression. At equivalent 100 μ M concentrations, the C6 and C8 MDB congeners were more effective than the prototypical inducer phenobarbital (PB) with respect to induction potency of CYP2B1, CYP2B2, and CYP3A1 gene expression. In contrast to PB, longer side-chain–substituted MDBs effectively induced CYP1A1 and CYP1A2 gene expression, in addition to the CYP2B and CYP3A genes. At equivalent molar concentrations, the catechol derivative of C6-MDB was ineffective in its ability to induce CYP gene expression, indicating the importance of the intact methylenedioxy bridge in the induction mechanism. Levels of MDB-inducible CYP2B1 and CYP2B2 mRNA were highly correlated with CYP2B1/2 apoprotein levels, ascertained by immunoblot analysis of cultured hepatocyte S9 fractions. Compared with results from previous in vivo analysis (12), the current data indicate that pharmacodynamic factors may influence MDB induction profiles and that differences in MDB effects on CYP gene expression result depending on distinct structure-activity relationships. © 1998 John Wiley & Sons, Inc. J Biochem Toxicol 12: 253–262, 1998  相似文献   

15.
《Genomics》1995,29(3)
In the human liver and adrenal, there is a single hydroxysteroid sulfotransferase, which catalyzes the transformation of dehydroepiandrosterone to dehydroepiandrosterone sulfate, the most abundantly circulating steroid in humans, and also catalyzes the sulfation of a series of other 3β-hydroxysteroids as well as cholesterol. Dehydroepiandrosterone sulfate serves as precursor for the formation of active androgens and estrogens in several peripheral tissues, indicating that hydroxysteroid sulfotransferase plays a pivotal role in controlling the hormonal action of sex steroids by regulating their bioavailability. We recently elucidated the structure of the gene encoding hydroxysteroid sulfotransferase (STD), also designated dehydroepiandrosterone sulfotransferase, which spans 17 kb and contains six exons. The STD gene was preliminarily assigned to chromosome 19 by polymerase chain reaction (PCR) amplification of DNA from a panel of human/rodent somatic cell hybrids. To locate the STD gene, the novel biallelic polymorphism found in intron 2 was genotyped in eight CEPH reference families by direct sequencing of PCR products. Two-point linkage analysis was first performed between the latter polymorphism and chromosome 19 markers from Généthon and NIH/CEPH. The closest linkage was observed with D19S412 (Zmax= 9.23; θmax0.038) and HRC (Zmax= 5.95; θmax0.036), located on the 19q13.3 region. A framework map including six Généthon markers flanking the polymorphic STD gene was created by multipoint linkage analysis. Thereafter, a high-resolution genetic map of the region was constructed, yielding to the following order: qter–D19S414–D19S224–D19S420–D19S217–(APOC2–D19S412)–(STD–HRC)– KLK–D19S22–D19S180–PRKCG–D19S418–tel.  相似文献   

16.
17.
18.
 A cDNA encoding a new secretory form of mouse membrane cofactor protein (MCP, CD46) was identified additionally to the membrane form cDNA. The secretory MCP, predicted from the cDNA sequence, consisted of the conserved four short consensus repeats (SCRs) plus a four amino acid-stretch. Unlike human MCP which comprises many isoforms, mouse MCP cDNA predicted a single isoform of membrane MCP with cytoplasmic tail 1 (CYT1) and serine/threonine-rich domain C (STC). To clarify the genomic origin and monomorphic alteration of these cDNAs, we cloned and analyzed a mouse genomic DNA harboring the full coding sequence of MCP from a 129/SV mouse genomic library. The mouse Mcp was a single gene ∼50 kilobases long. Eleven of the 14 coding exons of the human MCP gene and intron-exon boundary sequences were found to be conserved in the mouse gene. The STC homologue but not the STA or STB homologue in the mouse exons was functional: the latter being due to deletions and lack of consensus sequences for splicing. The sequence equivalent to cytoplasmic tail 2 (CYT2) has not been identified in the Mcp genome. Thus, the three exons (STA, STB, and probably CYT2) responsible for the polymorphism of human MCP by differential splicing were missing in the mouse Mcp gene. Unlike the case in humans, no Mcp-related genes or pseudogenes were observed in the mouse genome. The single mouse Mcp gene was mapped to the R-positive H5 band of mouse Chromosome 1 by FISH. Strikingly, one alternative exon with 73 base pairs (encoding the four new amino acids and a TGA stop codon) was discovered between the SCRIV and the STC exons; alternative splicing causes the generation of the secretory form of mouse MCP. These results on mouse MCP, together with the information concerning other mouse SCR proteins, infer that the regulator of complement activation (RCA) gene cluster is genetically diverged between humans and mice. Received: 22 April 1999 / Revised: 21 June 1999  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号