共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
Summary Previous authours have suggested that the Type I respiratory enhancement in Chlorella was the result of an increased supply of a respiratory substrate or intermediate, or a change in activity of a respiratory enzyme. Our studies with respiratory inhibitors show that the Type I effect is not a general respiratory enhancement, as would be expected from an increase in available substrate, but rather is specifically associated with the tricarboxylic acid cycle and the electron transport chain. The feedback controls on these two processes are such that changes in activities of the component enzymes or in concentrations of carbohydrate intermediates would not be expected to affect the overall respiration rate: an ATP demand is needed to explain the results. A stimulation of chloroplast RNA and protein synthesis by blue light may be the basic mechanism.Abbreviations FMN flavin mononucleotide - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - PEP phosphoenolpyruvate - TCA tricarboxylic acidPart of this work was reported at the 6th International Congress on Photobiology, Bochum, West Germany, 1972. 相似文献
5.
6.
The oxidation of Mn2+-pyrophosphate to Mn3+ by superoxide (O2?) was quantitative as evidenced from the formation of Mn3+-pyrophosphate and hydrogen peroxide and from the inhibition by superoxide dismutase. Using the competitive relation between Mn2+-pyrophosphate and superoxide dismutase for the O2?, the rate constant of Mn2+ oxidation was estimated to be about 6 × 106m?1 s?1. The oxidation of Mn2+-pyrophosphate by illuminated chloroplasts was also indicated to be stoichiometrically induced by O2?. In the presence of saturating amounts of the Mn2+, a double enhancement of hydrogen peroxide production and triple uptake of oxygen were found, as expected from the oxidation of Mn2+-pyrophosphate by O2?. Anaerobiosis or superoxide dismutase annuled these increments. We propose that the O2? generated as the sole initial step of the Mehler reaction oxidized Mn2+-pyrophosphate, and we discuss the role of free manganese in chloroplasts. 相似文献
7.
Photoreduction of sulfur dioxide by spinach leaves and isolated spinach chloroplasts 总被引:1,自引:2,他引:1
下载免费PDF全文

Labeled sulfur dioxide was found to be extensively absorbed by spinach (Spinacea oleracea L.) leaves. Labeled sulfides detected in leaf blades following fumigations with sulfur dioxide in light indicated that photoreduction of sulfur dioxide had occurred. Measurable proportions of this labeled sulfur was localized within the chloroplast fraction. Suspensions of isolated chloroplasts supplied with labeled sulfur dioxide contained labeled sulfides following a 30-minute illumination period in water-cooled reaction vessels. With reference to recent studies of the chloroplast sulfur reduction pathway, probable points of entry for sulfur dioxide and the subsequent release of hydrogen sulfide are discussed. 相似文献
8.
9.
The inhibition of photosynthetic CO2 fixation by O2, commonly referred to as the Warburg effect, was examined in isolated intact spinach (Spinacia oleracea) chloroplasts. The major characteristics of this effect in isolated chloroplasts are rapid reversibility when O2 is replaced by N2, an increased inhibition by O2 at low concentrations of CO2 and a decreased effect of O2 with increased concentrations of CO2. 相似文献
10.
G Knutsen 《Biochimica et biophysica acta》1965,103(3):495-502
11.
Studies of the variability of enhancement in Chlorella pyrenoidosa confirm the existence of two types of variability: a very slow diurnal variation linked to the growth cycle and a much more rapid adaptive response to the immediate incident light conditions (State I-State II transitions). Measurements of the wavelength dependencies and relative contributions of these two types of variability suggest that they may be linked. A close examination of the enhancement signals associated with the State I-State II transition reveals that the transitions can take place in any one of three ways: by a change in Photosystem II efficiency alone, by a change in Photosystem I efficiency alone or by a simultaneous change in the efficiencies of both photo systems. Measurements of the rates of transition between State I, State II and the dark adapted state, Dark, suggest that the behaviour of State II and Dark are normally, but not always, identical. The transitions between the three states were found to be first order. For those samples exhibiting the same behaviour in Dark and State II, the rate of the State I-State II transition was found to be independent of the wavelength of Light II, suggesting that the return from State I to State II is essentially a dark process and that the driving force for the adaptive transition is the over-stimulation of Photosystem I. Finally, a model is proposed, involving an antagonistic control of the quantum yields of photochemistry of the two photosystems, that is capable of explaining the links between the two types of variability, their wavelength dependencies and the shapes of the individual enhancement signals. 相似文献
12.
Regulation of photosynthetic carbon metabolism during phosphate limitation of photosynthesis in isolated spinach chloroplasts 总被引:3,自引:0,他引:3
Intact chloroplasts isolated from spinach were illuminated in the absence of inorganic phosphate (Pi) or with optimum concentrations of Pi added to the reaction medium. In the absence of Pi photosynthesis declined after the first 1–2 min and was less than 10% of the maximum rate after 5 min. Export from the chloroplast was inhibited, with up to 60% of the 14C fixed being retained in the chloroplast, compared to less than 20% in the presence of Pi. Despite the decreased export, chloroplasts depleted of Pi had lower levels of triose phosphate while the percentage of total phosphate in 3-phosphoglycerate was increased. Chloroplast ATP declined during Pi depletion and reached dark levels after 3–4 min in the light without added Pi. At this point, stromal Pi concentration was 0.2 mM, which would be limiting to ATP synthesis. Addition of Pi resulted in a rapid burst of oxygen evolution which was not initially accompanied by net CO2 fixation. There was a large decrease in 3-phosphoglycerate and hexose plus pentose monophosphates in the chloroplast stroma and a lesser decrease in fructose-1,6-bisphosphate. Stromal levels of triose phosphate, ribulose-1,5-bisphosphate and ATP increased after resupply of Pi. There was an increased export of 14-labelled compounds into the medium, mostly as triose phosphate. Light activation of both fructose-1,6-bisphosphatase and ribulose-1,5-bisphosphate carboxylase was decreased in the absence of Pi but increased following Pi addition.It is concluded that limitation of Pi supply to isolated chloroplasts reduced stromal Pi to the point where it limits ATP synthesis. The resulting decrease in ATP inhibits reduction of 3-phosphoglycerate to triose phosphate via mass action effects on 3-phosphoglycerate kinase. The lack of Pi in the medium also inhibits export of triose phosphate from the chloroplast via the phosphate transporter. Other sites of inhibition of photosynthesis during Pi limitation may be located in the regeneratige phase of the reductive pentose phosphate pathway.Abbreviations FBP Fructose-1,6-bisphosphate - FBPase Fructose-1,6-bisphosphatase - MP Hexose plus pentose monophosphates - PGA 3-phosphoglycerate - Pi inorganic orthophosphate - RuBP ribulose-1,5-bisphosphate - RuBPCase ribulose-1,5-bisphosphate carboxylase - TP Triose Phosphate 相似文献
13.
Purified, intact chloroplasts of Spinacia oleracea L. synthesize galactose-labeled mono- and digalactosyldiacylglycerol (MGDG and DGDG) from UDP-[U-14C]galactose. In the presence of high concentrations of unchelated divalent cations they also synthesize tri- and tetra-galactosyldiacylglycerol. The acyl chains of galactose-labeled MGDG are strongly desaturated and such MGDG is a good precursor for DGDG and higher oligogalactolipids. The synthesis of MGDG is catalyzed by UDP-Gal:sn-1,2-diacylglycerol galactosyltransferase, and synthesis of DGDG and the oligogalactolipids is exclusively catalyzed by galactolipid:galactolipid galactosyltransferase. The content of diacylglycerol in chloroplasts remains low during UDP-Gal incorporation. This indicates that formation of diacylglycerol by galactolipid:galactolipid galactosyltransferase is balanced with diacylglycerol consumption by UDP-Gal:diacylglycerol galactosyltransferase for MGDG synthesis. Incubation of intact spinach chloroplasts with [2-14C]acetate or sn-[U-14C]glycerol-3-P in the presence of Mg2+ and unlabeled UDP-Gal resulted in high 14C incorporation into MGDG, while DGDG labeling was low. This de novo made MGDG is mainly oligoene. Its conversion into DGDG is also catalyzed, at least in part, by galactolipid:galactolipid galactosyltransferase. 相似文献
14.
Effect of glutamine and its metabolites (amino acids) on Chlorella glutamine synthetase (GS) (E.C.6.3.1.2) in the presence of Mg or Mn was studied. Purified GS preparation was used, isolated from Chlorella grown in the presence of NH as a sole nitrogen source. Glutamate, aspartate, alanine and glycine inhibit GS activity in the presence of both Mg and Mn. Tryptophane and valine (up to 15 mM) activate GS in the presence of Mn. Tryptophane inhibits GS in the system with Mg. Sinergistic inhibition was observed under the combined effect of amino acids on GS in the presence of Mn and aspartate or alanine. The change of GS activity observed is supposed to be due to the inhibitory effect of glutamine and amino acids studied, since the glutamine content is increased (in 2.5 times for 5 min) and that of alanine and dicarbonic amino acids (for the following 15 min) under NH assimilation in Chlorella cells. 相似文献
15.
By use of a micro technique for producing extracts of spinach mesophyll cells, chloroplasts were isolated in a state wherein they displayed microscopically visible, reversible osmotic properties. Swollen spherical chloroplasts treated with hypertonic sucrose or mannitol media, but not NaCl, could be shrunken to a state resembling their disk appearance in living cells. Reversible osmotic behavior was more easily demonstrated when the chloroplasts were initially isolated from cells in a relatively low osmolar concentration in contrast to using 0.25 m sucrose or more concentrated media. Individual chloroplasts could be swollen and contracted repeatedly through as many as 4 cycles. The relationship between the capacity for osmotic behavior and chloroplast appearance in cell extracts is discussed. 相似文献
16.
Characteristics of light-dependent inorganic carbon uptake by isolated spinach chloroplasts 总被引:1,自引:2,他引:1
下载免费PDF全文

Sicher RC 《Plant physiology》1984,74(4):962-966
The light-dependent accumulation of radioactively labeled inorganic carbon in isolated spinach (Spinacia oleracea L.) chloroplasts was determined by silicone oil filtering centrifugation. Intact chloroplasts, dark-incubated 60 seconds at pH 7.6 and 23°C with 0.5 millimolar sodium bicarbonate, contained 0.5 to 1.0 millimolar internal inorganic carbon. The stromal pool of inorganic carbon increased 5- to 7-fold after 2 to 3 minutes of light. The saturated internal bicarbonate concentration of illuminated spinach chloroplasts was 10- to 20-fold greater than that of the external medium. This ratio decreased at lower temperatures and with increasing external bicarbonate. Over one-half the inorganic carbon found in intact spinach chloroplasts after 2 minutes of light was retained during a subsequent 3-minute dark incubation at 5°C. Calculations of light-induced stromal alkalization based on the uptake of radioactively labeled bicarbonate were 0.4 to 0.5 pH units less than measurements performed with [14C]dimethyloxazolidine-dione. About one-third of the binding sites on the enzyme ribulose 1,5-bisphosphate carboxylase were radiolabeled when the enzyme was activated in situ and 14CO2 bound to the activator site was trapped in the presence of carboxypentitol bisphosphates. Deleting orthophosphate from the incubation medium eliminated inorganic carbon accumulation in the stroma. Thus, bicarbonate ion distribution across the chloroplast envelope was not strictly pH dependent as predicted by the Henderson-Hasselbach formula. This finding is potentially explained by the presence of bound CO2 in the chloroplast. 相似文献
17.
Carbon dioxide fixation in the light and in the dark by isolated spinach chloroplasts 总被引:2,自引:16,他引:2
下载免费PDF全文

Factors affecting CO2 fixation in the spinach (Spinacia oleracea) chloroplast were investigated. Free magnesium ions are shown to be highly inhibitory for photosynthetic CO2 fixation in isolated intact spinach chloroplasts. The pH optimum for CO2 fixation is about 8.5 but is dependent upon the reaction medium. Conditions are defined under which chloroplasts illuminated in the absence of CO2 accumulate ribulose 1,5-diphosphate, and fix CO2 in a subsequent dark period when high magnesium ion concentrations are provided. The regulation of photosynthetic CO2 assimilation by these factors is discussed. 相似文献
18.
19.
Induction curves of the delayed light emission in spinach chloroplasts were studied by measuring the decay kinetics after each flash of light. This study differs from previous measurements of the induction curves where only the intensities at one set time after each flash of light were recorded. From the decay kinetics after each flash of light, the induction curves of the delayed light emission measured 2 ms after a flash of light were separated into two components: one component due to the last flash only and one component due to all previous flashes before the last one. On comparing the delayed light induction curves of the two components with the fluorescence induction curves in chloroplasts treated with 3-(3,4-dichlorophenyl)-1,1-dimethylurea and in chloroplasts treated with hydroxylamine and 3-(3,4-dichlorophenyl)-1,1-dimethylurea, the component due to the last flash only is found to be dependent on the concentration of open reaction centers and the component due to all previous flashes except the last is dependent on the concentration of closed reaction centers. This implies that the yield of the fast decaying component of the delayed light emission is dependent on the concentration of open reaction centers and the yield of the slow decaying component is dependent on the concentration of closed reaction centers. 相似文献
20.
Glyoxylate and glutamate effects on photosynthetic carbon metabolism in isolated chloroplasts and mesophyll cells of spinach 总被引:3,自引:3,他引:3
下载免费PDF全文

Addition of millimolar sodium glyoxylate to spinach (Spinacia oleracea) chloroplasts was inhibitory to photosynthetic incorporation of 14CO2 under conditions of both low (0.2 millimolar or air levels) and high (9 millimolar) CO2 concentrations. Incorporation of 14C into most metabolites decreased. Labeling of 6-P-gluconate and fructose-1,6-bis-P increased. This suggested that glyoxylate inhibited photosynthetic carbon metabolism indirectly by decreasing the reducing potential of chloroplasts through reduction of glyoxylate to glycolate. This hypothesis was supported by measuring the reduction of [14C]glyoxylate by chloroplasts. Incubation of isolated mesophyll cells with glyoxylate had no effect on net photosynthetic CO2 uptake, but increased labeling was observed in 6-P-gluconate, a key indicator of decreased reducing potential. The possibility that glyoxylate was affecting photosynthetic metabolism by decreasing chloroplast pH cannot be excluded. Increased 14C-labeling of ribulose-1,5-bis-P and decreased 3-P-glyceric acid and glycolate labeling upon addition of glyoxylate to chloroplasts suggested that ribulose-bis-P carboxylase and oxygenase might be inhibited either indirectly or directly by glyoxylate. Glyoxylate addition decreased 14CO2 labeling into glycolate and glycine by isolated mesophyll cells but had no effect on net 14CO2 fixation. Glutamate had little effect on net photosynthetic metabolism in chloroplast preparations but did increase 14CO2 incorporation by 15% in isolated mesophyll cells under air levels of CO2. 相似文献